HiD2990P 倍频板原理

组成结构

HiD2990P 倍频板原理框图如下面图 1 所示。

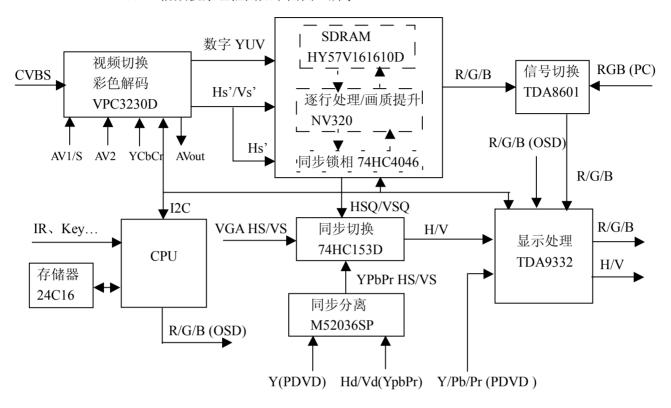


图 1: HiD2990P 倍频板原理框图

整个倍频板主要由视频解码、逐行转换、同步分离、显示处理、CPU 控制、信源切换等功能部分组成。(详细电路原理请参照 HiD2990P 线路图。)

视频解码功能由UN07(VPC3220D)来完成。VPC3230D是微科公司(MICRONAS)生产的梳状滤波视频处理器,该芯片内部集成了视频切换、Y/C分离(4H自适应梳状滤波器)、A/D转换、数字解码、PIP等功能。其功能强大,外围电路简单,有4路AV输入,其中一路带S端子,2路RGB/YPbPr输入,一路AV输出;PIP功能具有4种显示大小15种显示模式;视频解码输出支持ITU-R 601/656数字输出接口。该IC采用80脚PQFP封装,管脚功能如表1所示。

衣	表 T: VPC3220D官脚功能							
I/O	符号	功能说明	电压值	引脚				
输入	B1/CB1IN	B1 或 Cb1 模拟信号输入	0~3.5Vp-p	1				
	G1/Y1IN	G1 或 Y1 模拟信号输入		2				
	R1/CR1IN	R1 或 Cr1 模拟信号输入		3				
	B2/CB2IN	B2 或 Cb2 模拟信号输入		4				
	G2/Y2IN	G2 或 Y2 模拟信号输入		5				
	R2/CR2IN	R2 或 Cr2 模拟信号输入		6				
	ASGF	模拟信号接地	0V	7				
	VGAV	VGA 场同步输入(不用)		16				

表1: VPC3220D管脚功能

	CIN	S端子色度输入	0~3.5Vp-p	71
	VIN1	视频 1/S 端子亮度输入	0~3.5Vp-p	72
	VIN2-VIN4	视频 2~视频 4 输入	0~3.5Vp-p	73-75
	FB1IN	RGB 快速削隐输入	1.0Vp-p	79
输出	FFIE	FIFO 输入允许(不用)		19
	FFWE	FIFO 写控制(不用)		20
	FFRSTW	FIFO 读写复位(不用)		21
	FFRE	FIFO 读控制(不用)		22
	FFOE	FIFO 输出允许(不用)		23
	CLK20	20.25 MHz时钟输出	3.3V CMOS	24
	LLC2	倍频时钟输出	3.3V CMOS	27
	LLC1	时钟输出	3.3V CMOS	28
	Y0-Y7	8 位亮度数据输出	3.3V CMOS	40-37,34-31
	C0-C7	8 位色度数据输出	3.3V CMOS	50-47,44-41
	INTLC	隔行输出(不用)		53
	AVO	有效视频输出(不用)		54
	FSY/HC	前端同步/水平钳位脉冲(不用)		55
	MSY/HS	主同步/行同步脉冲	3.3V CMOS	56
	VS	场同步脉冲	3.3V CMOS	57
	FPDAT	前端/后端数据(不用)		58
	CLK5	CCU 5MHz 时钟输出	3.3V CMOS	60
	VOUT	模拟视频输出	2.0Vp-p	70
控制	SCL	I2C 时钟	3.3V CMOS	13
	SDA	I2C 数据	3.3V CMOS	14
	RESQ	复位输入,低电平有效	3.3V	15
	TEST	测试输入	0V	16
	YCOEQ	Y/C 输出允许	0V	17
	I2CSEL	I2C 地址选择		67
供电	VSUPCAP	数字供电去耦电容	3.3V	9
	VSUPD	数字供电电压	3.3V	10
	GNDD	数字供电接地	0V	11
	GNDCAP	数字供电去耦电容接地	0V	12
	GNDPA	模拟引脚接地	0V	25
	VSUPPA	模拟引脚供电	3.3V	26
	VSUPLLC	LLC 电路供电	3.3V	29
	GNDLLC	LCC 电路接地	0V	30
	GNDY	Y输出接地	0V	35
	VSUPY	Y 输出供电	3.3V	36
	VSUPC	C输出供电	3.3V	45
	GNDc	C输出接地	0V	46
	GNDsy	同步信号接地	0V	51
	VSUPSY	同步信号供电	3.3V	52
	VSTBY	待机供电电源	3.3V	59
]	ASGF	模拟区接地	0V	64

	GNDF	模拟前端接地	0V	65
	VRT	参考电压点	2.5V	66
	ISGND	模拟输入信号接地	0V	68
	VSUPF	模拟前端供电	5V	69
	VSUPAI	模拟前端器件供电	5V	76
	GNDAI	模拟前端器件接地	0V	77
	VREF	参考电压点	2.5V	78
	AISGND	模拟元件信号地	0V	80
其他	XTAL1	20.25MHz 时钟输入		62
	XTAL2	20.25MHz 时钟输出		63
	NC	空脚		8,6

逐行转换功能由 UN02、UN04、UN08 和 UN09 等 IC 来实现。UN02 型号为 NV320,是 nDSP 公司生产的多功能视频图像增强处理芯片,NV320 内置的逐行转换处理器,可把 NTSC/PAL 制式的隔行信号转换为 SDTV 标准的 480P/60Hz 逐行格式,同时可提供彩色、亮度瞬态改善(CTI、LTI),动态黑电平扩展,动态运动自适应降噪等多种画质改善电路功能。UN04(74HC4046)为同步锁相环 PLL 集成电路,主要为 UN02 提供精确的同步信号。UN08 和 UN09(HY57V16161D)为 SDRAM 帧存贮芯片,为 UN02 提供容量为 1M x 32bit 的帧数据缓冲区。NV320 采用 208 脚 PQFP 封装,管脚功能请参照《技术专刊》,74HC4046 采用 16 脚 DIP 封装,管脚功能如表 2 所示。

表 2: 74HC4046 管脚功能

引脚	符号	I/O	功能说明	引脚	符号	I/O	功能说明
1	PCP	O	相位比较器脉冲输出	9	VCIN	I	VCO 输入
2	PC1	O	相位比较器1输出	10	SF	О	解调输出
3	BIN	I	比较器输入	11	R1	О	电阻 R1 连接点
4	VCOUT	О	VCO 输出	12	R2	О	电阻 R2 连接点
5	INH	I	禁止控制输入	13	PC2	О	相位比较器 2 输出
6	CA	O	电容 C1 连接点 A	14	AIN	I	信号输入
7	СВ	O	电容 C1 连接点 B	15	ZEN	О	相位比较器3输出
8	GND	P	接地	16	VCC	P	供电电源

同步分离由 UN10(M52036SP)来实现。M52036 是 MITSUBISHI 公司生产的同步信号处理芯片,可以自动地从三种不同方式存在的信号中分离出一种同步信号:分离的同步信号(双极性 1-5 V_{P-P})、复合同步信号(双极性 1-5 V_{P-P})、视频信号中的同步信号(负极性同步信号),并能对被选的这些同步信号进行波形处理,它最适合对自动寻址式显示器、监示器进行同步信号处理。M52036SP 集成电路采用 20 脚 SDIP 封装,其管脚功能如表 3 所示。

表 3: M52036SP 管脚功能表

引出脚	名称	引出脚电 压	引出脚功能说明
1	行同步信	直流 0V	行同步信号逻辑输出脚,该脚出现高电平、低电平或高
	号状态	或 5.0V	电平与加到⑥脚的正极性,空载或负极性输入信号有关。

2	 场同步信号状态	直流 0V 或	场同步信号逻辑输出脚,该脚出现高电平、低电平或高			
2	奶 門少信 5 小 恋	5.0V	电平与⑧脚输入信号的正极性、空载或负极性有关。			
	绿基色信号分离	开路时大	绿基色(视频)分离滤波脚,外接电阻、电容组成滤波			
3	电路的基极滤波	约为 4.0V	时间常数,放电型电阻可以改善自偏电路响应,低的电			
	电路		阻值会减小自偏电路增益。			
4	绿基色信号输入	开路时大	视频信号中同步信号的绿基色输入脚,用电容 C 连接绿			
	+文 114	约为 4.0V	基色信号,同步信号负极性。			
5	接地	0V	接地			
6	复合同步信号/行	开路时大	复合同步信号或行同步信号输入脚,偏置约 6.0V,阻抗 10kΩ,整形与极性检测由内部接入的双向门限变换器实			
0	同步信号输入	约为 6.0V	现,输入幅度 1.5V _{P-P} 。			
		开咱时大	外接电容需要用作极性检测和无信号输入检测的滤波			
7	复合同步信号/行	约为 6.0V	器,电容越大,纹波越小,误动作也会减小,但检测响			
,	同步信号检测	(无信号)	应时间被加长。			
			场同步输入脚,偏置约 6.0V,阻抗 10kΩ,整形与极性			
8	场同步输入	开路时大	检测由内部接入的双向门限变换器实现,输入幅度			
		约为 6.0V	1.5V _{P-P°}			
	场同步信号检测	开路时大	外接电容需要用作极性检测和无信号输入检测的滤波			
9		约为 6.0V	器,电容越大,纹波越小,误动作也会减小,但检测响			
		(无信号)	应时间被加长。			
10	 场同步/分离调整	开路时大	场同步分离调整引出脚,如无外接调整,门限值近似为			
10	*/J1997/J1994E	约为 1.0V	1.0V			
11	 场同步/分离输入		场同步分离输入脚。复合同步信号由外部合成,因此,			
			复合同步信号进入场同步分离。			
12	数字地	0V	接地			
13	V _D ⁺ 输出		正极性场激励脉冲输出脚,为开路集电极输出型,该脚			
			可以调整输出幅度,充电电流大约为 6mA。			
14	V _D ⁺ 输出		正极性行激励脉冲输出脚,为开路集电极输出型,该脚可以调整输出幅度,充电电流大约为6mA。			
			负极性行激励脉冲输出脚,为开路集电极输出型,该脚			
15	V _D ⁻ 输出		可以调整输出幅度,充电电流大约为 6mA。			
16	Vec	12.0V	电源电压			
			钳位脉冲输出脚,为开路集电极输出型,该脚可以调整			
17	钳位脉冲输出		输出幅度,充电电流大约为 6mA。			
10	行同步信号极性	直流 0V 或	行同步信号逻辑输出脚,低电平、低电平或高电平的出			
18		5.V	现与⑥脚输入信号正极性、无信号或负极性相对应。			
19	场同步信号极性	直流 0V 或	场同步信号逻辑输出脚,低电平、低电平或高电平的出			
19		5.0V	现与⑧脚输入信号正极性、无信号、负极性相对应。			
20	钳位时序		钳位脉冲时序引出脚,钳位脉冲宽度与外接电阻、电容			
20	MH 177H 1/1.		有关、电阻、电容越大,则钳位脉冲宽度越宽。			

显示处理功能由 UN01(TDA9332)来实现,TDA9332 是 PHILIPS 公司推出的 I2C 总 线控制显示处理芯片。其功能齐全,全总线控制,暗平衡自动控制,两路 RGB 输入,一路 YUV 输入,一路 RGB 输出,内部有 YUV—RGB 转换矩阵,行场幅度及中心、平行四

边形、枕形、梯形、四角、弓形等几何失真全部可总线调整。可用于单频(50Hz/60Hz)或倍频(100Hz/120Hz)扫描显示系统。其采用 44 脚 QFP 封装,单一 8V 供电电压,管脚功能如表 4 所示。

CPU 控制功能部分由 UN11 和 UN12 实现。UN11 采用东芝公司专为 TV 系统开发的 8 位 TV 控制专用微处理器 TMP88PS38N(OTP 版本),其内置 64KB 程序 ROM,2KB 数字 RAM,内置 OSD 字符发生器支持 384 个不同字符,可同时在屏幕上显示 32 列 x 12 行字符,菜单动画设计,三色半透明显示格式。TMP88PS38N 采用 42 脚 SDIP 封装,其相应管脚功能如表 5 所示。UN12(24C16)是容量为 16Kbit 的记忆 IC,存储各种配置、调整、频道等数据。

表 5: CPU 管脚功能

10.5	表 5: CPU 自脚功能								
引	符号	I/O	功能说明	引	符号	I/O	功能说明		
脚				脚					
1	VSS	_	接地	22	OSD R	О	屏显红基色信号输出		
2	ROTATE	О	旋转 PWM 输出	23	OSD G	О	屏显绿基色信号输出		
3	SOUNDBOX	О	外置音箱控制开关	24	OSD B	О	屏显蓝基色信号输出		
4	POWERCUT	О	音响状态关掉行输出	25	OSD Y	О	屏显挖空信号输出		
5	AT	О	音响信号输出	26	FBP	I	逆程反馈脉冲输入		
6	SYS1	О	伴音制式控制	27	VFB	I	场反馈脉冲输入		
7	SYS2	О	伴音制式控制	28	DVDD	I	电源		
8	SAW SW	О	伴音制式控制	29	DVSS		接地		
9	RSOUT	О	开机复位 UN02 UN07	30	TEST				
10	BUSOFF	I/O	总线关闭开关(未用)	31	XIN	I	晶振输入		
11	SCL	I/O	I2C 总线时钟信号线	32	XOUT	О	晶振输出		
12	SDA	I/O	I2C 总线数据信号线	33	RESET	I	复位信号输入		
13	VGA-HS	I/O	VGA 行频自动检测	34	TV/PC	О	TV 与 PC 信号切换输出		
14	AFT	I	自动频率控制输入	35	IR	I	遥控接收输入		
15	KEY0	I	按键控制输入	36	VM	О	VM 控制开关输出		
16	KEY1	I	按键控制输入	37	CLK	I/O	与寄存器相连时钟		
17	WMUTE	О	重低音静音控制开关	38	DATA	I/O	与寄存器相连数据		
18	R/LMUTE	О	主声道静音控制开关	39	VVSS		接地		
19	WEBTV	I/O	网络电视控制开关	40	YpbPr	О	PDVD 信号选择开关		
20	STB	О	待机信号输出	41		I/O			
21	I	О	屏显菜单字输出信号	42	VDD	I	电源		

信源切换功能由 UN03 和 UN06 组成,其中 UN3 型号为 74HC153,是双 4 选 1 数据选择器,用于同步信号的切换。UN06 为双通道 RGB 选择开关,在这里主要作为 VGA 信号及电视信号的切换选择。

线路原理

整个倍频板的信号输入输出主要通过 5 个插座与外部连接。其中 JN01 和 JN02 用于与 主板信号的连接, JN03 用于连接 CRT 板, JN04 用于连接 AV 板, JN05 用于连接 VGA 接口板。

1、视频解码

从主板上过来的各种格式视频信号主要通过 JN02 插座输入倍频板。其中主板高频头 输出的复合视频信号 TV IN,通过 JN02 的 17 脚进入倍频板,经 CN189、190(220pF)、 LN21 (4.7uH) 低通滤波及 RN91 (75Ω) 阻抗匹配后, 经 CN118 (680nF) 耦合进 UN07 的 75 脚(VIN4)。从主板过来的 AV2 视频信号 VIDEO2 从 JN02 的 7 脚进入倍频板, 经 CN116 (680nF) 耦合进 UN07 的 73 脚 (VIN2)。从主板过来的 AV1 视频信号或 S 端子 Y 信号 SVIDEOY/V1 从 JN02 的 5 脚进入倍频板, 经 CN115 (680nF) 耦合进 UN07 的 72 脚 (VIN1)。主板过来的 S 端子 C 信号 SVIDEO-C 从 JN02 的 3 脚进入倍频板, 经 CN114 (680nF)耦合进 UN07 的 72 脚(VIN1)。从主板过来的隔行色差端子信号 YCbCr Y、YCbCr Cb 和 YCbCr Cr 分别从 JN02 的 11 脚、13 脚和 15 脚进入倍频板, 经阻抗匹配及低通滤波 后,分别由 CN138、CN133 和 CN140 (220nF) 耦合进 UN06 的 2 脚 (Y1)、1 脚 (CB1) 和 3 脚 (CR1)。UN07 在 CPU 的控制下选择相应的信号源送入 AD 转换器进行数字转换, 对于复合视频信号和 S 端子,将会被送入数字梳状滤波器进行 YC 分离,然后在进行视频 解码,解出亮度 Y 信号和两个色差信号 Cr 和 Cb。这三个信号以及 1 脚、2 脚和 3 脚过来 的信号都被送入一个混合器,经相应处理后的三路色差分量信号 Y、Cr 和 Cb 送入一个 2D 缩放控制单元,经过 PIP、对比度、亮度及峰化等处理后送入输出格式处理单元,然后从 40~37 脚、34~31 脚、50~47 脚和 44~41 脚输出 16 位 YUV 数字视频格式信号, 分别送入 UN02的171~176脚、178~179脚和189~196脚。

UN07 的 62 脚和 63 脚之间接 20.25MHz 的晶振,时钟同步信号和行场同步信号由 VPC3230D 内部产生。由 27 脚、56 脚和 57 脚输出到 UN02 的 24 脚、199 脚和 198 脚,为信号的逐行处理提供同步信号。28 脚的时钟信号通过 RN112 加到 UN02 的 24 脚。15 脚复位端与 UN02 的 204 脚相连,共同连接 CPU 的复位脚,以便开机正常工作后 UN07、UN02 进行复位。13 脚和 14 脚的 I2C 总线连接 VCP3230D 与 CPU 之间的通讯,以完成信号切换、制式转换等操作程序。

2、逐行处理

逐行处理及画质提升是通过 UN02 来完成的。UN02 采用 nDSP 公司 NV320P 的升级版本芯片 NV320,它具有更完善的功能及更简单的外围电路。UN04 同步锁相环 PLL 的集成电路为 UN02 提供精确的同步信号,它的 3 脚输入从 UN07 的 56 脚输出的行同步信号 HS3,14 脚接从 UN02 内部产生的同步信号 HRC(203 脚),两个信号经 UN04 内部的鉴相比较器比较,鉴相误差信号从 UN04 的 4 脚输出加到 UN02 的 202 脚,控制调整其压控振荡器的振荡频率,使其与 UN07 的频率相同。UN02 对输入的数字视频信号进行画质提升及逐行转换处理,完成 50Hz 隔行到 60Hz 逐行的扫描变换。UN08 和 UN09 是两个帧存贮器,为 UN02 逐行/隔行时提供帧数据缓存。经逐行变换处理后的数字视频 YUV 信号,在 UN02 内部通过矩阵转换成三路 RGB 信号,然后由内部精度为 10bit 的 D/A 转换转换器进行数模转换,完成数字信号到模拟信号之间的转换,处理完的 60Hz 逐行模拟图像信号 RGB 分别从 UN02 的 69 脚、56 脚和 63 脚输出,连接到 UN06 的 2 脚、3 脚和 4 脚。倍行后的行场同步信号从 38 脚和 41 脚输出,连接到 UN06 的 3 脚和 13 脚。

UN02 的 34、35 脚为 I2C 总线控制信号,与 CPU 之间传递隔行转换逐行过程中所需 的程序控制数据和时钟。UN02 的 32 位数字信号 DQ0~DQ31 和 11 位地址信号 A0~A10 分别连接 UN08 和 UN09 帧缓冲存储器的数据线及地址线,22 脚(CLK)、128 脚(CS)、129 (RAS)、135 (CAS) 和 136 (WE) 分别同时连接 UN08 和 UN09 的 35 脚(MEMCLK)、18 脚(CS)、17 脚(RAS)、16 脚(CAS) 和 15 脚(WE),UN02 的 21 脚(DQM0) 和 137 脚(DQM1) 分别连接 UN08 和 UN09 的 36 脚(UDQM)。

3、PDVD 分量信号处理

PDVD 信号从 JN05 输入。从 JN05 的 2 脚输入的 Y 分量信号 YPbPr Y, 一路经 QN17 射随输出到 UN10 的 4 脚进行同步分离。PDVD 的行场同步信号 YPbPr H 和 YPbPr V 从 JN05 的 7 脚和 8 脚输入,分别加到 UN10 的 6 脚和 8 脚。UN10 为 DTV 行场同步分离 IC, 且优先选择从 6 脚、8 脚输入的外加行、场同步信号。分离出的行场同步信号从 UN10 的 14 脚和 13 脚输出,连接到 UN03 的 6 脚和 10 脚。从 JN04 的 7 脚和 8 脚过来的行场同步信号 VGA Hs 和 VGA Vs 分别连接到 UN03 的 3 脚和 13 脚。UN02 的 38 脚和 41 脚输出得倍频后的 TV 行场同步信号 HSQ 和 VSQ 分别连接到 UN03 的 5 脚和 11 脚。这些同步信号由 UN03 进行切换后,从 UN03 的 7 脚和 9 脚输出,送入到 UN01 的 24 脚和 23 脚处理。

PDVD Y 信号另一路经 QN08、QN09 放大,由高频提升网络 CN44、CN45、CN46、LN05 高频提升后,经耦合电容 CN163 送入 UN01 的 28 脚。从 JN05 的 4 脚、6 脚输入的色差分量信号 YPbPr Pb、YPbPr Pr,分别经 QN11、QN13 反向放大,高频提升后耦合到 UN01 的 27 脚、26 脚,此时输入的 Y/Pb/Pr 比例为 1:-1.33:-1.05 (TDA9332 芯片要求)。

4、PC 信号处理

从 JN04 插座的 1、3 和 5 脚输入的 VGA RGB 信号经 RN176、RN177、RN178、CN166、CN177、CN177 直接耦合到 UN06 的 6 脚、7 脚和 8 脚,与加到 2 脚、3 脚和 4 脚的逐行电视信号 RGB 进行切换,从 12 脚、11 脚和 10 脚输出的 RGB 信号经电阻 RN38、RN31、RN39,电容 CN154、CN155 和 CN156 低通滤波后,由 CN18、CN19、CN20 耦合进显示处理芯片 UN01 的 30 脚、31 脚和 32 脚。UN06 的 5 脚为信号控制端,与 CPU 的 34 脚相连,高电平时选择 PC VGA 输入信号,低电平时选择 TV 电视信号。

5、显示处理部分

由 UN06 选择的逐行电视 RGB 基色信号或 VGA RGB 基色信号分别从 UN06 的 12 脚、11 脚和 10 脚输出,从 UN01 的 30 脚、31 脚和 32 脚输入;经过幅度处理后的逐行 DVD 分量 YUV 信号从 UN01 的 28 脚、27 脚和 26 脚输入,CPU 40 脚输出的 PDVD 选择信号从 UN01 的 33

脚输入; CPU 22 脚、23 脚、24 脚和 25 脚输出的三基色 OSD RGB 信号和 OSD 挖空信号分别 从 UN01 的 35 脚、36 脚、37 脚和 38 脚输入; 经 UN03 选择的行场同步信号从 7 脚和 8 脚输出, 从 UN01 的 24 脚和 23 脚输入。

UN01 在 CPU 的控制下对输入的 YUV 信号和 RGB 信号进行选择,经饱和度、色差和基色矩阵、对比度、亮度、白峰限幅、束电流控制、暗平衡调节和阴极束电流控制等一系列处理后,从 40 脚、41 脚和 42 脚输出 RGB 三基色信号。RGB 三基色信号经 QN04、QQN05、QN06 射随后连接到 JN03 的 9 脚、7 脚和 5 脚,由排线连接到 CRT 板 P502 的 5 脚、7 脚和 9 脚,从 CRT 板反馈回来的暗电流信号从 JN03 插座的 3 脚(BCK)输入,经电阻、电容及二极管保护滤波电路后,从 UN01 的 44 脚(BLKIN)输入。UN01 的 8 脚为行驱动脉冲信号输出,连接到 JN02 的 21 脚; UN01 的 1、2 脚为差分场锯齿波信号输出,连接到 JN02 的 27、29 脚。UN01 的 3 脚为东西枕校 E-W 信号输出端,连接 JN02 的 33 脚; UN01 的 4 脚为阳极高压检测输入,连接 JN02 的 35 脚; UN01 的 13 脚为行反馈脉冲输入端,连接 JN02 的 25 脚; UN01 的 43 脚为束流检测输入,连接 JN02 的 23 脚。UN01 的 10、11 脚为 12C 总线控制信号,连接 CPU 的 I2C 总线接口。

6、CPU 功能控制

UN11 为 CPU 控制芯片, 其除了对倍频板的功能控制外, 主板、CRT 板、音效板等功能也由 UN11 控制。

其中,JN02的11脚(VM)为速度调制功能控制端,连接UN11的36脚,用于控制CRT板上的速度调制功能。JN02的31脚(VFB)为场逆程输入端,连接UN11脚,主要用于OSD字符显示垂直方向的定位。

JN01的1脚(STB)为待机控制信号输出端,连接UN11的20脚,用于控制TV的待机工作状态。JN01的4脚(STB)为待机控制信号输出端,连接UN11的20脚,用于控制TV的待机工作状态。JN01的6脚(SYS1)、8脚(SYS2)和10脚(SAWSW)为伴音制式控制端,连接UN11的6脚、7脚和8脚,用于选择主板上二合一高频头的伴音制式。JN01的12脚(AFT)为AFT信号输入端,连接UN11的14脚,用于选合时频率的检测。JN01的12脚(AFT)为旋转功能PWM波形输出端,连接UN11的2脚。JN01的18脚(BUSOFF)、19脚(SDA)和20脚(SCL)为12C总线控制线,连接UN11的10脚、12脚和11脚。JN01的24脚(AT)为音响状态控制端,连接UN11的5脚。JN01的26脚(RSOUT)为复位控制输出端,连接UN11的9脚,用于控制UN02和UN07开机时复位。JN01的28脚(VMUTE)和30脚(R/LMUTE)分别为重低音和主声道静音控制端,连接UN11的17脚和18脚,用于控制功放的静音状态。JN01的32脚(IR)为红外遥控信号输入端,连接UN11的35脚。JN01的34脚(KEY0)和36脚(KEY1为按键输入端,连接UN11的15脚和16脚。