创维液晶彩电 8H11 机芯原理与维修手册

一、机芯特点

1、功能特点

8H11 机芯采用华亚高性能图像处理芯片 HTV272 搭建,外加 analogix HDMI reciver 及 switch 芯片 anx8770。支持一路射频/两路视频/一路 YPbPr/一路 VGA/两路 HDMI1.3,同时预留 ABS-S 接口。本机芯具有以下特点:

机芯成本低,整机性价比优良之特点。外置的 HDMI 处理模块也可在无需使用此功能之市场有效将成本降至极致;

预留之 ABS-S 接口能较好的满足部分农村市场需要。

整机待机功耗小于 1W;

Philips tda9885 中放具有良好的信号适应性;

2、结构特点:配结构

本机芯主要搭配以下两个新结构:

19S10/22S10: 稳重的黑色效果;

圆润的曲线处理;

喇叭隐藏于正面下方;

透光 LOGO:

触摸按键

22S 22 温和通透的材质 有机玻璃

柔和抽面, 光洁质感

隐藏下出喇叭

侧出耳机插孔

下置桥式电源开关

背出 AV 端子

3、配屏介绍

19S10: 奇美 TFT-LCD

1366*768

16: 9

16.7M Colors

单路 LVDS

Excellent Brightness: 300 cd/m2

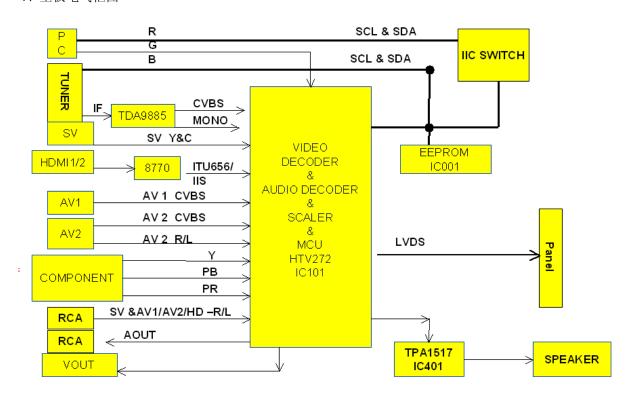
Contrast Ratio: 800:1 Fast Response Time: 5ms Color Saturation: NTSC 72%

22S10/22S12: LG TFT-LCD

1366*768

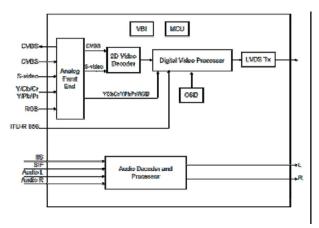
16: 9

16.7M Colors


lóu. com

单路 LVDS

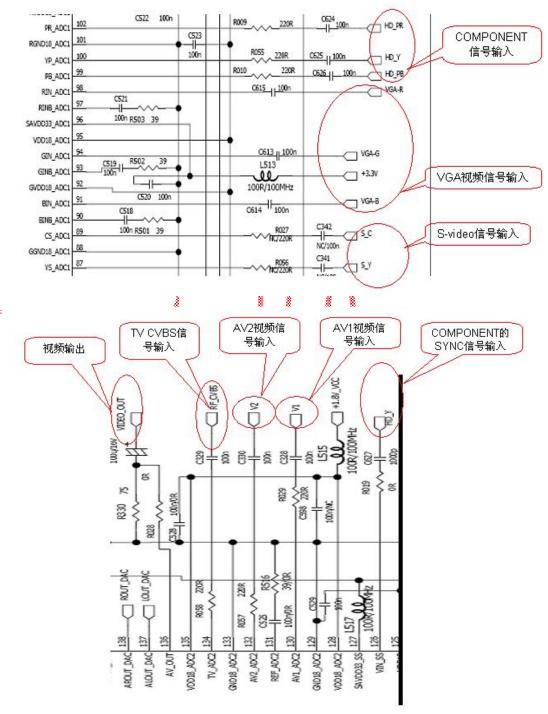
亮度: 350 cd/m2 Contrast Ratio: 1000:1 Fast Response Time: 5ms


视角: R/L 170(Typ.), U/D 160(Typ.) (若后续新配其他屏可考虑另行通知)

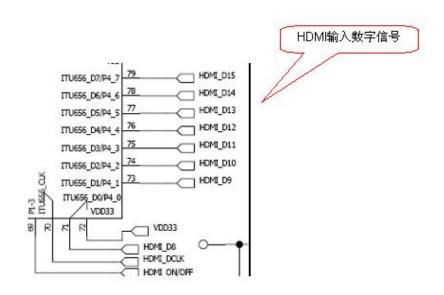
4、主板电气框图

二、电路分析

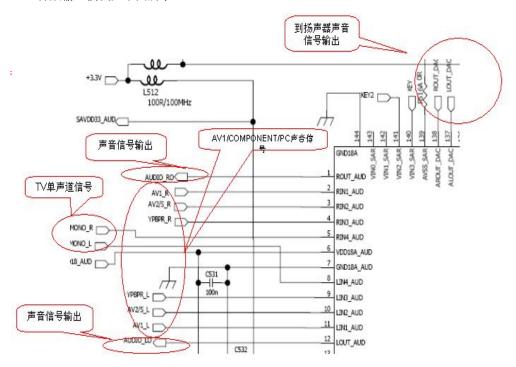
1、HTV272(主芯片)


HUAYA MICRO 高度集成的面向中小屏幕的 LCD TV 处理器;

可支持最高输入 1080i/UXGA(1600X1200)WUXGA+(1920X1200)1680X1050@60; 输入支持 TV, RGB, CVBS, YC,HDMI 和 YPBPR;

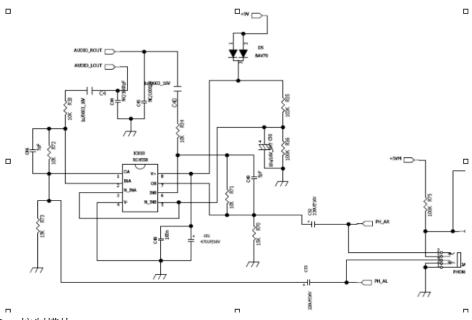

支持单 LVDS,双 LVDS 信号格式输出;

HTV272 内部结构如上图所示


2、信号输入模块如下图所示

HDMI 信号通过 ANX8770 转换为数字输入 HTV272 数字通道如下图:

音频输入模块如下图所示

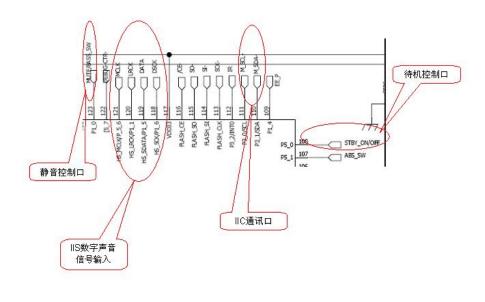


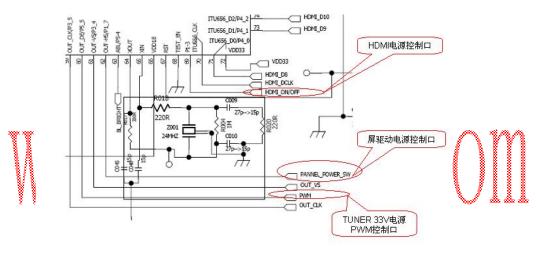
HTV272 有 4 路模拟通道声音输入,通过内部开关切换,再经过内部的平衡处理,高低音处理,送往外部的功放 TPA1517。

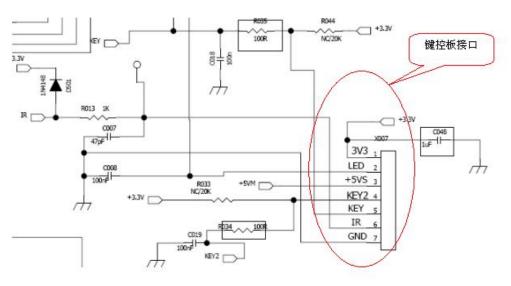
另有一路从 ANX8770 数字通道 IIS 输出,从 HTV272 的 IIS 数字声音输入。通过内部的 DAC 转换,同样经过内部音效处理,送往外部功放。

耳机输出电路部分(仅新标准主板备有耳机输出端口)

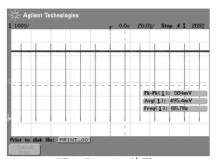
将 HTV272 音频输出送至 4558 运放,经运放放大处理后送往耳机。静音则通过耳机插入 形成高低电平差异,再由电路自动将功放 MUTE 静音。 耳机电路部分(新标准主板,AV 背出 22S12):


3、控制模块

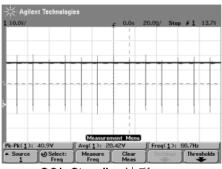

I/O 口差异表:由于排板及功能定义不同的原因,8H11新标准主板和旧主板 I/O 定义存在一些差异。


背出结构(S12新标准主板)和下出结构(S10)

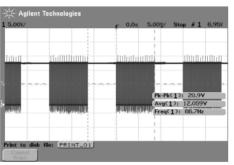
引脚	背出板:功能	直板:功能	
Pin123	P1_0:MUTE	P1_0 MUTE	
pin69	P1_3: HDMI_RST	直板:功能 P1_0 MUTE PDMI_ON/OF	
pin 109	P1_4:EE_P	EB_P	
Pin62	P1_7:HDMI_HPD2	pannel_power_sw	
pin59	P3_5: HDMI_HPD1	NC	
pin61	P3_4: ABS_SW	NC	
pin60	P5_5: BL_SW	PWM (FOR 33V)	
PIN122	P5_7:PWM_33V	DEBUG-CTR-(FOR ISP)	
pin108	P5_0: STBY_ON/OFF	STBY_ON/OFF	
pin107	P5_1: PANNEL_POWE_SW	ABS_SW	
PIN63	P5_4: BL_BRIGHT	BL_BRIGHT	
Pin24	P5_2: NC	BL_SW	
PIN23	P5_3: NC	HDMI_RST	
PIN40	P6_0:NC	HDMI1_HPD1	
PIN41	P6_1: NC	HDMI2_HPD2	
	HDMI_ON/OFF 由STBY控制		
TDA9885:	OP2: SYS_SW	NC	
	OP1: DEBUG-CTR	SYS_SW: (NC)	


以 22\$10 主板为例:

SDA 波形图:

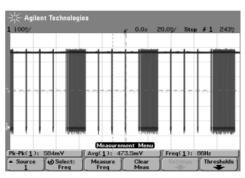


SDA Standby 波形

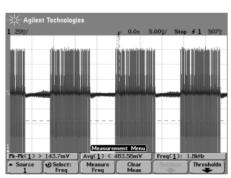


SDA Power on 波形

SCL 波形图

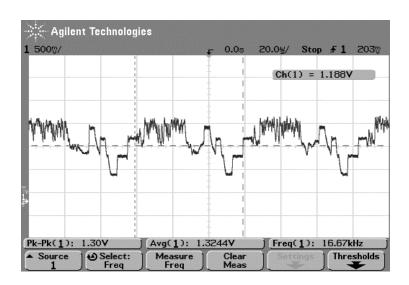


SCL Standby 波形

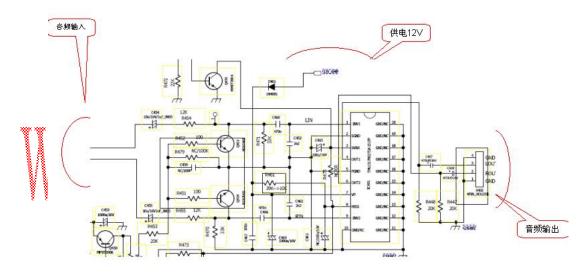


SCL Power on 波形

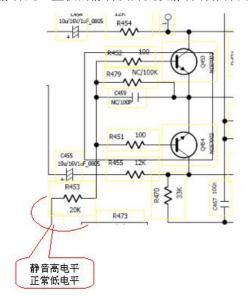
正常工作时 SDA SCL 呈规则的 期波形, 切换频道时才会产生以下所示不规则波形:



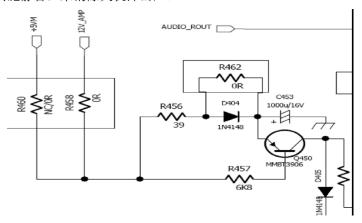
S-SCL波形

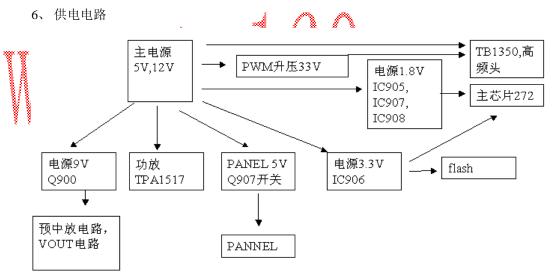


M-SDA波形


CVBS 波形(行周期):

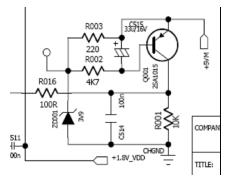
4、双通道输入音频功放 TPA1517


静音处理整机的静音及开关机静音动作都由 MCU 控制:


声音功放采用具有很高性价比的 TPA1517,立体声输出,功率可达到 2x7W,外围电路简单,非常适合中小屏幕应用。

其静音电路通过 I/O 控制和电源泄放电路共同控制。正常播放采用 HTV272 内部静音和 I/O 控制 MUTE 控制 TPA1517 静音,

交流开关机因电源泄放快, I/O 口反应慢,则通过电源泄放电路,控制 TAP1517 的 MUTE 来实施静音,来消除关机冲击声。



5、频头

7、复位电路:

复位电路采用较简单的 RC 电路,成熟稳定,简单可靠:

8、触摸感应按键

本机芯配 S10 结构时采用触摸感应按键,采用 infinitrue 触摸感应芯片 IT2418 来实现。IT2418 采用独特的电容数字转换(CDC)技术,依次测量 8 个感应通路(S0~S7)上的电容值并将电容量转换为数字量,然后送到内嵌 DSP 进行数字信号处理,判断是否有按键。

由于电容性触摸检测对象是电容变化量,而非电容本身的大小。所以允许不同通道之间 无按键时的固有电容存在较大差异。

每个通道的采样速率为500~4000次/秒,采样得到12比特的数据。

IT2418 特性:

8路感应通道,每路灵敏度可单独调节

触摸响应时间: 18~20ms @正常模式, 120ms @省电模式

电容检测范围: 0~80pF, 检测分辨率典型值为 0.02pF, 且分辨率可调

工作电压范围为 2.8V~5.5V

感应输出接口: I2C/SPI/GPIO

与标准 I2C 兼容的 2 线总线协议

3/4 线 SPI 总线

可扩展的 GPIO, 支持开漏输出模式

支持中断输出, 低有效

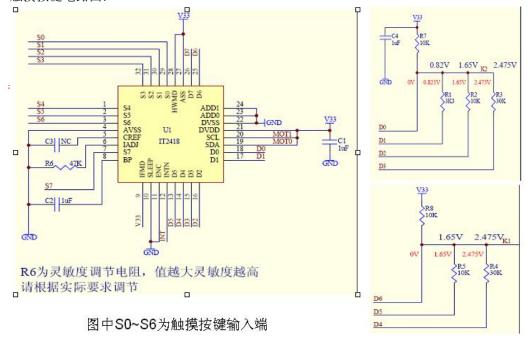
内建振荡器、上电复位系统和高 PSRR 的 LDO

相邻感应通道抑制功能(ASS)

支持两种背光模式:全背光和指示背光

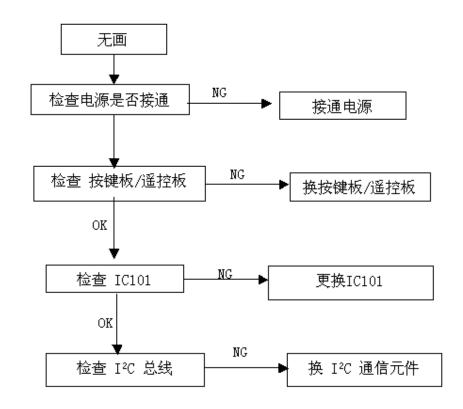
肉椒湯动粉断算法,可输出滑动状态

支持蜂鸣输出。

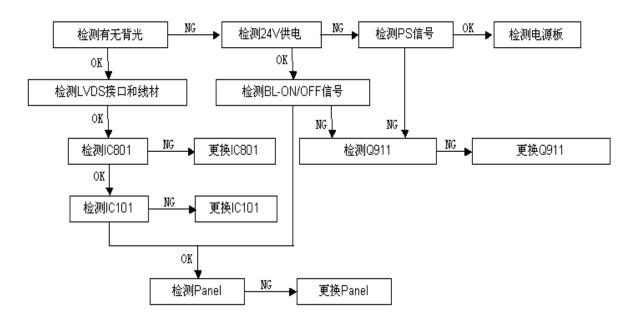

专用感应判断算法能自适应环境变化

0.35 um 工艺, ONN-32 封装

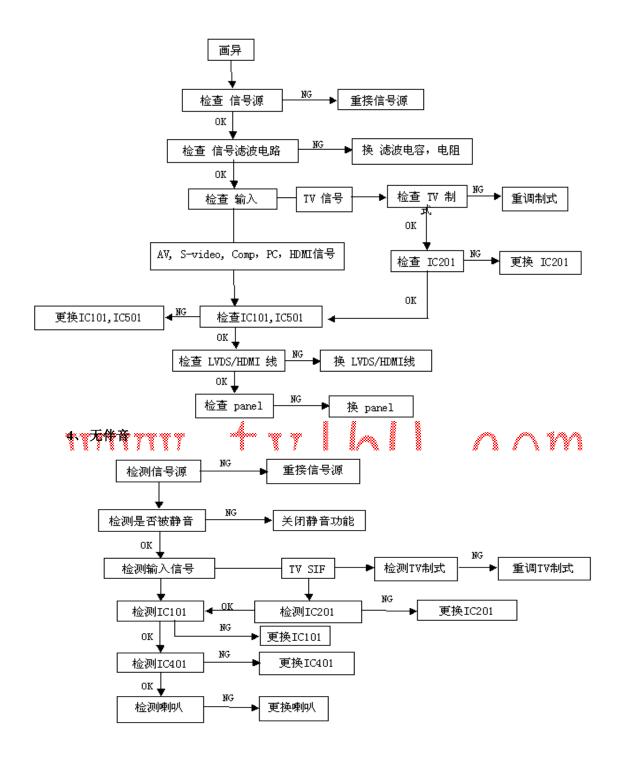
0.55 ms ± 1 2 2 1 3 2 1 3 1			
引脚号	引脚名	类型	功能说明
1~3	S4~S6	A	感应按键 4~6
4	AVSS	G	模拟地
5	CREF	A	外接电容作为电容数字转换的参考起始点;
6	IADJ	A	外接电阻用于调整电容分辨率
7	S7	A	感应按键 7
8	BP	A	接电容作为 LDO 滤波电容, 容连接到 DVSS
9	IFMD/OD	I	作为 IFMD 串口模式选择
10	PD	I	掉电控制,高有效
11	ENC	I	使能编码输出模式
12	INTN/ACT/BZO	О	背光输出或者蜂鸣输出
13	GPIO5/BZMD1	IO	HWMD 引脚接低时,作为通用 GPIO5
14	GPIO4/BZMD0	IO	HWMD 引脚接低时,作为通用输入输出接口 4
15~18	GPIO3~0	IO	通用输入输出接口~0
19	SDA/SDO/MOT0	IO	HWMD 引脚接低时: 当 IFMD 引脚接高,则作为
			SDO(SPI 数据输出总线);当 IFMD 引脚接低,则
			作为 SDA(IIC 数据总线)。HWMD 引脚接高时,
			作为输入,设置触摸有效时间长度。
20	SCL/SCLK/MOT1	I	HWMD 引脚接低时:当 IFMD 引脚接高,则作为


			SCLK(SPI 时钟总线); 当 IFMD 引脚接低,则作
			, , , , , , , , , , , , , , , , , , ,
			为 SCL(IIC 时钟总线)。HWMD 引脚接高时,作
			为输入,设置触摸有效时间长度。
21	DVDD	P	数字电源,外接 1μF 电容连接到 DVSS
22	DVSS	G	数字地
23	23ADD0/CSN/SE	1	HWMD 引脚接低时: 当 IFMD 引脚接高,则作为
	N1		
24	ADD1/SDI/SEN0	1	HWMD 引脚接低时: 当 IFMD 引脚接高, 则作为 SDI(SPI
			数据输入总线);当 IFMD 引脚接低,则作为 ADD1(IIC 器
			件地址选择引脚)。HWMD 引脚接高时,SENO 调整基准
			电容控制。
25/26	GPIO6~7	Ю	通用输入输出接口 6~7
27	ASS	1	相邻按键抑制(ASS)使能,高有效
28	28HWMD	1	芯片配置模式选择。接高为硬件配置模式,接低为软件配
			置模式。
29~32	S0~S3	Α	感应按键 0~3

触摸按键电路图:



三、常见故障检修流程


1、黑屏

3、图像异常

四、调试说明

4.1 进入工厂模式按住本机按键的"菜单"键不放,再依次按遥控器的"9"、"7"、"8"三个数字键,就会进入工厂模式,屏幕左下方出现软件和 EEPROM 信息(如图 1 所示)。

放开本机按键的"菜单"键,按遥控器的"菜单"键,出现图像菜单,再按"频道+"(▲)键,进入工厂菜单,如图 2 所示: 4.2 工厂模式各项说明

4.2.1 工厂模式主菜单项目

White 暗平衡/白平衡调整 Panel 显示屏及背光控制菜单

Tuner 高频头控制菜单
Hotel 宾馆模式菜单
Design 设计菜单
Shipment 退出工厂模式

4.2.2 暗平衡/白平衡菜单项目

色温(STD 标准/Warm 暖色/Cold 冷色)

RC 暗平衡红色 GC

暗平衡绿色 BC 暗平衡蓝色

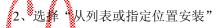
 RD
 白平衡红色

 GD
 白平衡绿色

 BD
 白平衡蓝色

C.Temp

4.2.3 显示屏及背光控制菜单项目

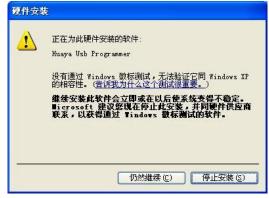

Panel 显示屏格式控制

Min.BKL 背光最小亮度 Max.BKL 背光最大亮度

五、ISP 在线软件升级

- 5.1 ISP 接口小板连接连接请参照下图
- 5.2 USB 驱动程序安装
- 1、将接口小板的 USB 接口接入 PC 出现向导窗口,选择"否,暂时不"





3、选择驱动文件所在的目录

5、等待直到安装完成。

