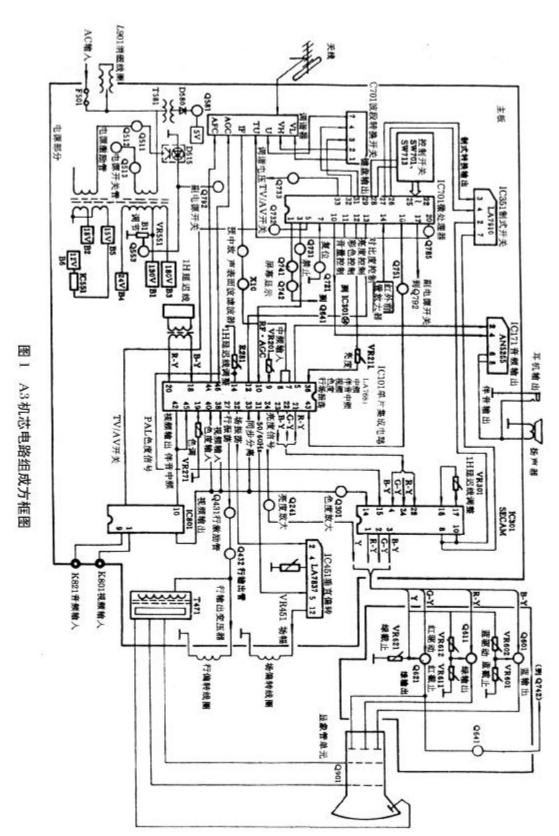
第五部份 A3机芯原理与维修

A3机芯是日本三洋公司在(M51354AP+μPC1423)两片机的基础上发展起来的。该机芯采用三洋公司生产的电视机专用单片集成电路LA7680/LA7681,适用于37cm至54cm的单声道、多制式、低成本的彩色电视机。是目前我国电视机生产厂家广泛采用的一种机芯。其主要特点是:

- 1. 该机芯采用一块大规模集成电路LA7680/LA7681。外围元件少、电路调整简单、性能稳定、一致性好。
- 2. 行、场扫描电路采用晶体振荡器和数字分频技术。因此,不需要进行行场同步调整,保证了当接收弱信号时有良好的同步性能;当无信号时,字符显示稳定,光栅不抖动。
- 3. 场扫描输出电路采用集成电路LA7837/LA7838。场扫描输出电路与偏转小信号处理电路 之间不存在交、直流反馈,扫描作用由集成电路完成。除场幅和场中心外,场输出电路不需要 调整。
 - 4. 机芯电源采用冷板设计, 主机芯不带电, 安全性能好。
 - 5. 适用于PAL、NTSC彩色制式及D/K、B/G、I、M等多种广播制式。
 - 6. 采用新型遥控系统,实现了整机全功能及特殊功能遥控。
- 7. 最大限度地采用小型元器件,提高了安装率。除显象管驱动电路外,整机所有元器件均安装在一块印制电路板上。

一、A3机芯电路组成


A3机芯电路组成方框图如图1。典型整机电原理图(以公司生产的A3机芯TC-2128A机为例)。(部份可参照)

从图1可见,A3机芯主要由调整器A101,小信号处理电路IC101 (LA7681或LA7680),场偏转电路IC451 (LA7837),行输出电路 (Q431、Q432、T471),视放电路 (Q601、Q611、Q621), 伴音功放电路 IC171 (AN5265),AV/TV选择电路IC801 (LC4066),电源电路 (Q511、Q512、Q513、T511),中央处理器 (CPU) IC701 (M34300N4-721SP)等组成。整机电路工作过程简述如下。

(一) 信号通道

A3机芯信号通道由U/V一体化电子调谐器A101 (TDO12EB,相当于我国TDQ-3B型调谐器),图象中频前置放大器Q101,声表面波滤波器(TSF1339L),集成电路IC101 (LA7680)的一部分,伴音中频变换器Q141、Q142,陶瓷滤波器X143、X141、X142,陶瓷陷波器X121、X122、X251,陶瓷振荡器(500kHz)X144,陶瓷鉴频器X161 (6MHz)及其外围元件组成。

从天线接到的PAL D/K、B/G、或SECAM D/K、B/G射频电视广播信号,经电子调谐器A101选择频道、放大、混频后得到中频电视信号从A101的IF端输出,经匹网络(C107、C108、C106、T101)加到前置中放Q101基极,放大后经声表面波带通滤波器选频,由中频变压器T103对称输出,加到IC101的中频输入端⑦、⑧。在IC101内,中频信号经AGC控制放大、视频检波、

- 127 -

预视放后,从IC101⁴²输出复合视频全电视信号及第二伴音中频信号。

从IC101 倒输出第二件音中频信号,经6.5MHz带通滤波器X142或6.5MHz带通滤波器的X141,选出6.5MHz或5.5MHz件音中频信号,抑制掉视频信号后加到伴音中频变换混频器Q141的基极,与本振Q142输出的500kHz振荡信号混频,由带通滤波器X143选出6MHz中频信号,加到IC101 ④。在IC101 内,该信号经限幅放大后,由②外接6MHz 鉴频器解调出伴音信号。伴音信号经IC101 ① 脚外接电容去加重、交流耦合加到IC101 ④,经电控衰减、音频放大后,从IC101 ⑤ 输出所需的音频信号。

(二)视频、彩色信号处理电路

A3 机芯视频、彩色信号处理在 IC101内完成。由 IC101 ②输出的复合全电视信号,经 X121(5.5MHz陷波)或X122(6.5MHz陷波)陷波器去掉第二伴音中频信号后,加到视频幅度调整电路Q124的基极,调整VR121电位器使Q124射极输出幅度为1V(P-P)的视频信号。该信号经隔直电容耦合到AV/TV选择开关IC801 ①,外部输入的视频信号加到IC801 ①。经AV/TV选择开关选出的视频信号分成四路加到各处理电路。第一路经R401、C401、R402、C402加到IC101同步分离输入端③;第二路经亮度延迟线 L201去掉色度信号后加到 IC101视频输入端③;第三路经色度带通滤波器L251、C252、R251去掉亮度信号,取出色度信号加到IC101色度信号输入端④。第四路经视频放大器Q301放大后,由钟形滤波波器T301取出SECAM色度信号加到SECAM色度解调器IC301的色度输入端④。

A3机芯为多制式机芯,需完成PAL/4.43NTSC(亦可改为3.58NTSC)视频、彩色信号的处理。CPU IC701控制A3机芯可工作在PAL/SECAM自动识别状态(S-1),或PAL(S-2)状态,或SECAM(S-4)状态,或 4.43NTSC 状态。在下面的分析中,假定 A3 机芯分别工作在PAL或 4.43NTSC状态。

1. 工作在PAL状态

制式切换开关IC351⑧输出低电平,Q271截止,IC101⑤经电容C271接地,作为PAL识别检波器的平滑滤波电容完成PAL制识别。

这时,IC801输出的视频信号一路经L201亮度延迟线0.4 µs延迟,去掉色度信号后加到IC101亮度信号输入端38。在IC101内部经处理完成亮度控制、勾边处理、对比度控制钳位后,Y信号从 IC10124输出,经射随器Q241加到视放管Q601、Q611、Q621的发射极。改变加到 IC10135脚上的直流电压大小,可改变24输出的-Y信号的直流电平,完成亮度控制。改变加到 IC101122脚上的直流电压大小,由IC内部处理,可完成亮度信号和色度信号的对比度控制。

另一路经L251、C251、C252、R251组成的色度带通滤波器选出色度信号,去掉亮度信号后加到IC101色度信号输入端40,经IC内带通放大后从40输出,加到延迟线L282上延迟1H (64 μs)。

在匹配变压器T281中,延迟1H后的色度信号与IC101⁴输出的直通信号进行加、减运算,分离出U和±V色度信号,再分别加到IC101⁸和²⁰,最后在IC101内经同步检波,解调出R-Y、B-Y信号。R-Y信号从IC101²1输出,B-Y信号从IC101²3输出,并分别加到IC301²2和⁴。

另外,IC10122输出G-Y矩阵电路,解码出G-Y信号。解码后的色差信号 R-Y、G-Y、B-Y分

别加到视放电路Q611、Q621和Q601的基极回路与加到射极的-Y信号完成基色矩阵变换,恢复出R、C、B基色信号,驱动显象管阴极,显示彩色图象。

一路视频信号,经阻容电路C401、R401、C402、R402加到IC101同步分离输入端33,完成行、场扫描的同步。

2. 工作在4.43NTSC状态

A3机芯工作在 AV状态。 外部输入的4.43NTSC 视频信号经AV/TV选择开关IC801选择从④输出,与PAL工作状态一样,视频信号分别加到IC101亮度输入端③。

由于整机工作在NTSC状态,无须PAL识别,所以,Q271饱和导通,IC101⑤经1k Ω 电阻R271接地PAL识别电路不起作用。

电路工作在NTSC制信号处理状态,其视频、彩色信号处理过程与PAL制时相同,不再重述。

由于工作在NTSC状态,所以IC101③输出50Hz/60Hz场频识别信号,送到IC451⑤控制场幅大小。

由于NTSC制彩色信号相位对图象色调影响很大,因此电路中加有NTSC制色调控制电路。调节电位器VR271,改变IC101⁽⁹⁾直流电压,经IC内部色调电路控制,就可调整图象色调。

(三) 行、场扫描缴励电路

行、场扫描激励电路包含在IC101内。A3机芯行、场扫描电路采用晶体振荡和数字分频技术。IC10128外接陶瓷振荡器及IC内部电路组成 500kHz,即32 倍行频振荡器,产生500kHz 振荡信号,经 IC101内32 倍分频器分频和两级AFC锁相环后产生行扫描激励信号从 IC10127输出,然后加到行激励管Q431完成放大作用。在IC101内经32倍分频后的信号,以经场扫描分频器的继续分频得到场扫描驱动脉冲信号,从 IC10127输出,加到场偏转输出电路IC45122。Q807射极输出的视频信号经R401、R402、C401、C402阻容网络加到IC10133同步信号输入端,经IC101内行、场同步分离电路分离出行、场同步信号。行同步信号与IC101267输入积分后的行逆程脉冲进行相应比较、锁相,完成AFC作用,得到相应正确的行激励信号。调整VR411可改变送入 IC10126行逆程脉冲的各项输入分量,改变相位,从而调整图象在屏幕上的中心位置。

(四) 行、场扫描输出电路

从IC101②输出的行激励脉冲信号加到行激励管Q431的基极,经倒相放大后,由行激励变压器T431耦合,驱动行扫描输出管Q432。Q431、Q432工作在反相激励状态。Q432集电极输出的脉冲在行偏转线圈中产生线性变化电流,使电子束作水平方向运动,完成行扫描功能。利用行输出变压器T471,将行逆程脉冲升压、整流产生25kV左右高压供显象管阳极使用。该高压经分压即产生显象管所需的帘栅电压和聚焦电压,因此,调节行输出变压器上的两只电位器,就可进行聚焦、束流调整。显象管所需的6.3V(RMS)灯丝电压和AFC控制所需行逆程脉冲也是由行输出变压器提供。视放、主机芯所需的+108V和+120V电压由A3机芯主电源提供。这样可以减轻行输出负荷,提高整机可靠性。

A3机芯场输出电路与众不同,采用集成电路LA7837/7838(IC451),它与小信号处理电路

IC101之间不存在交、直流负反馈。IC101仅提供场激励脉冲和50Hz/60Hz场频识别信号,场扫描的全部功能均由IC451独立完成。IC101②输出的场频激励脉冲加到场输出IC451②,该脉冲触发IC451内单稳态电路,产生一定宽度的场频脉冲给IC451⑥的外接电容充电,形成锯齿波电压,再经IC451内部处理,反馈控制,放大后由②输出,驱动场偏转线圈使电子束完成垂直方向的偏转扫描。

当机芯工作在 NTSC 制时,场频为60Hz,这时 IC101自动识别出60Hz 场频,③ 输出高电平 (50Hz时,③ 为低电平),加到IC451的场幅控制端⑤,使锯齿波充电电流比50Hz时增大约20%,锯齿波幅度增加,场幅增加避免在观看NTSC节目时,图象变窄。改变转换开关SW451的位置,可调整场中心使场偏转中心与显象管中心重合。

(五) 伴音输出电路

伴音输出电路由集成电路IC171(AN5265)及其外围阻容元件组成。IC101⑤输出的伴音信号,或AV/TV开关IC801选择的外部音频输入信号,加到IC171②进行放大。CPU IC701⑩输出的音量控制电压加到IC171④,改变该脚的直流电压,可控制音量大小,音频信号最后经IC171进行功率放大后加到扬声器SP901,恢复声音信号。IC171的音频输出功率为3W。

(六) 视放电路

A3机芯的视放电路比较简单,由Q601、Q611、Q621三个中功率管及其外围电路组成。从IC301②、②、③输出的 R-Y、G-Y、B-Y 色差信号,分别加到 Q611、Q621及Q601的基极,从IC101④输出的-Y信号经射随器Q241同时加到Q601、Q611及Q621的射极。色差信号R-Y、G-Y、B-Y与-Y信号在Q601、Q611、Q621的b-e极间电路完成基色解码作用,分别产生R、G、B三基色信号,即(R-Y)一(-Y)=R、(G-Y)一(-Y)=G、(B-Y)一(-Y)=B。基色信号经放大后调制显象管三个阴极,在屏幕上显示出彩色图象。Q641为屏显字符倒相放大器,CPU IC701①输出的字符信号经Q641倒相放大后,在Q621集电极与G信号混合,加到显象管G枪,显示字符信号。

(七) 电压合成调谐电路(CPU电路)

A3机芯的遥控电路采用电压合成式调谐电路。中央处理器(CPU)为日本三菱公司的M34300N-721SP,有较强的控制功能。通过CPU及其外围电路可完成整机的全功能控制。IC701的②~②,②、③及按键开关SW701~SW713组成键盘扫描矩阵电路。按压不同的按键SW-701-SW713,可完成预置,波段选择(VL、VH、U三个波段),节目号增减(0~29、VCR2~VCR3),调谐增减(选台),选择模拟控制量(亮度、对比度、色度),模拟量增减调节(音量、亮度、对比度、色度),AV/TV转换,存贮,制式选择,恢复正常状态等控制。通过遥控发射器,除完成上述控制外,还可通过先进功能键"S",设置各种特殊功能,如全机清除、频道扫描自动/手动设定、禁止设定等。这也是区别于我国电视机大量采用的东芝CTS-130A、三菱M50436等遥控系统的特点之一。

IC701③、②为波段控制信息输出端,其输出加到波段开关IC710③、④,经IC710译码后,从IC710①、②、⑦输出的控制电压分别加到调谐器A101的VL,VH,UB端,完成波段切换。

IC701②、②输出制式转换控制信号,去制式转换板,完成制式转换控制。IC701③、③及外接4MHz 晶体 X701产生 4MHz 振荡信号作为CPU的时钟信号。③8、③9为行、场同步信号输入端。④、④及外接阻容元件组成6MHz字符发生振荡器,调整VR710可改变振荡频率,即调整字符在屏幕上的显示宽度。⑩、①、②、③及外围电路组成音量、色度、亮度及对比度调节电路,完成亮度、对比度、色度及音量的控制。⑥④为遥控解码输入端。遥控发射信号经遥控信号接收前置放大器A701放大后,从⑥④送入,在IC701内完成解码,从不同的输出脚输出控制信号,完成整机的遥控。由于A3机芯电源无特别保护功能,所以,CPU IC701⑤通过D792、D793二极管随时监视电源负载的变化,当有大电流发生时,通过⑤电位变化,经CPU内部作用,使IC701⑥输出高电平。Q797饱和导通,电源截止,完成保护作用,这一点也是与其他机芯不同的。IC701②为调谐电压PWM(脉宽调制)输出,经Q785放大、积分滤波后变为直流电压,送到调谐器A101的TU端,完成调谐选台作用。IC701⑤为AV/TV转换控制端,当按压AV/TV键时,⑤送出控制信号,经Q732控制AV/TV选择开关IC801,完成AV/TV切换。

(八) 电源电路

A3机芯电源电路是典型的自激式脉冲调宽开关电源。具体原理见P9机芯,这里简单叙述其输出电压的作用。开关变压器次级提供的脉冲电压经D552整流、C562滤波,得到180V电压供给视放电路;经D551整流、C561滤波得到130V电压供给行输出电路;以D553整流、C563滤波,得到24V电压,供给场扫描输出电路;经D554整流、C554滤波,得到15V电压;经12V三端稳压器IC551稳压,得到12V电压,供给主机芯电路;经D555整流、C565滤波,得到14.8V电压,供给伴音功放。AC220V电压经变压器T581降压、D582整C581滤波,得到直流电压,经电子稳压器Q581稳压,得至DC5V等待电压(Stand-by),供给CPU IC701。A3机芯电源电路的特点是电路简单、元器件少、成本低。由于机芯所有电压(除高压外)都由电源提供,所以,保证电源的可靠性,是非常重要的。

二、LA7680/LA7681集成电路解说与应用

LA7680/7681集成电路是三洋公司1991后开发生产的适用于PAL/NTSC制式彩电的单片集成电路,主要完成VIF(图象中频)、SIF(伴音中频)、视频、色度、偏转等小信号处理。LA7680/LA7681能自动识别50Hz/60Hz场频,并输出相应控制信号控制场输出电路LA7837/LA7838,保持垂直画面尺寸恒定,LA7680与LA7681的唯一区别在于LA7681能与SECAM色度解调集成电路相接,实现多制式(PAL/NTSC/SE-CAM)色度解调,因此,LA7681②不象LA76-80②那样为G-Y色差输出,而是对比度控制输出,且将对比度固定在最大处。

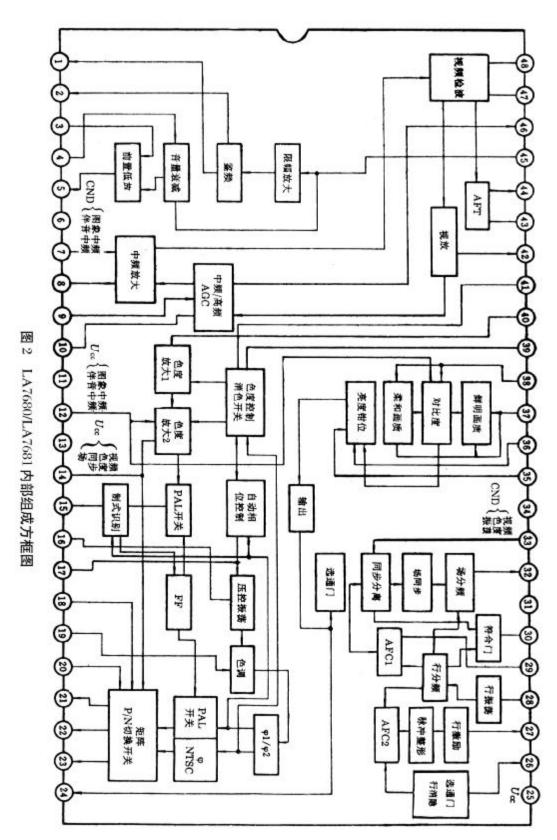
(一) LA7680/LA7681的特点

- 1. 采用小型封装, 外围元件少。
- 2. VIF增益高,可免用前置放大器、快速AFC;伴音输入、输出同步;图象、伴音同步静噪或伴音独立静噪。
 - 3. 视频带宽较宽,可达7MHz,直流输送量可变。
 - 4. 适应在PAL/NTSC制工作,弱电场工作特性好。

- 5. 色调电路内藏,适宜在NTSC制工作。
- 6. 行、场扫描采用晶振、数字分频技术,行、场同步不需要调整,可调整垂直同步分离灵敏度。
- 7. 能自动识别50Hz/60Hz场频,当与LA7837/LA7838连接使用时,能保持PAL/NTSC制工作垂直画面尺寸恒定,即使当无信号时,垂直画面尺寸也是恒定的。

(二) LA7680/LA7681的组成

LA7680/7681的组成方框图如图2。由五大部分组成。


- 1. 行、场扫描小信号处理电路。包括② ~③ 内部电路,主要完成行、场扫描激励信号的产生,行、场同步分离及行、场扫描的同步。电路还具有50Hz/60Hz场频识别功能,并输出相应控制信号,保证PAL/NTSC制工作时,场幅恒定。
 - 2. 亮度信号处理电路。包括35~38内部电路,完成清晰度、对比度控制,产生-Y信号。
- 3. 图象中频AGC放大, 图象检波, AFT控制, RF AGC电压形成电路。包括⑦~⑩、⑫~⑭、 ④~④及⑨、⑩内部电路。完成视频信号处理。
- 4. 伴音处理电路。包括①~⑤及⑥内部电路,完成第二伴音中频限幅放大、调频检波、电控衰减、音频预放大作用,最后输出伴音音频信号。
- 5. 色度信号处理电路。包括①~②及④内部电路。主要完成色度信号的带通放大,ACC控制,消色控制,色副载波恢复,U、±V信号分离,色度信号同步检波,PAL识别PAL/NTSC开关,色调控制等功能。

由此可见,LA7680/LA7681功能很强,可以代替M11五片,TA两片、TDA两片、Mμ两片等集成电路完成的所有功能。

(三) LA7680/LA7681各脚功能

为便于读者应用与维修,现将LA7680/LA7681各脚功能简述如下。

- ① 伴音调频解调输出端,外接1000pF电容与电阻到地,滤掉伴音载频信号,5.6k Ω 电阻串接0.01 μ F电容到地完成去加重。
- ② 调频鉴频器\静噪输入端。调频检波为乘法器检波,90°相移线圈或陶瓷鉴频器接于此端,改变线圈或陶瓷鉴频器的并接阻尼电阻,可改变伴音输出电平和带宽。该脚经1kΩ左右电阻接地,使其电压在1V以下,可起静噪声作用。
- ③ 音频前置负反馈端。该端子经串接电阻、电容到地,改变串接电阻大小,可改变音频放大器的增益,调整不失真输出电平。
 - (4) 音频信号输入端, 需用交流耦合输入音频信号, 输入阻抗为30kΩ左右。
- ⑤ 音频信号输出端,为射随器输出,输出阻抗较低。根据需要,⑤接一电阻到地、可提高输出阻抗。
 - 6 图象、伴音中频信号接地端。
- (7)、(8) 图象中频放大器输入端,用于平衡输入。输入电阻约为1.8k Ω,输入电容为8pF,耦合电容应大于0.01 μF。

- ⑨ RF AGC控制端。经⑩电容滤波后的AGC电压在⑨由接地电容再次滤波,进行图象中频的增益控制。⑨的外接电阻可改变RF AGC放大器的动作点,以调整⑩RF AGC输出的延迟点,完成延迟式 RF AGC 的作用。改变⑨串接电阻大小,可改变延迟点的调整范围,该电阻一般以100kΩ为官。
- ⑩ AGC电压滤波端,外接电容到地。AGC峰值检波器检波后的信号,经⑩电容滤波后,成为AGC电压。当通过外接开关电路使⑩电压在1V以下时可同时实现①低频信号输出以及⑫视频信号输出的静噪。
 - (1) 图象、伴音中频电路电源输入端。
- ② 视频、彩色对比度控制电压输入端和色同步净化端。改变②直流电压,可完成视频对比度、彩色对比度的同时控制。LA7681去掉了G-Y输出,对比度控制电压从②输出。②外接LC并联谐振电路,使谐振点调整在色副载波频率上,以达到色同步信号净化之目的。
 - (13) 视频、色度、同步电路电源输入端。
- ④ 色度信号输出端。在PAL制,④直流电压为6V(U_{CC} = 9V),与对比度、色度控制电压无关。由于④最大供给予电流为10mA,应考虑④外接幅度平衡电位器阻值的大小,通常以 $1k\Omega$ 为官。在NTSC制,④直流电压几乎为0V,色度信号不输出。
- ⑤ 识别滤波电容连接端。在PAL制,色同步信号每行相位都在变化,经识别相位检波器检波,通过⑥ 外接电容的平滑滤波来判断同步相位,完成识别。外接滤波电容容量增大,抗杂波干扰能力增强,但识别相位时间增加,一般外接电容以0.0047 μF为宜。在NTSC制,不需要识别,通过外接开电路,使⑥ 经1kΩ 电阻接地。该脚电压设置在3V以下,这时,集成电路内部系统即以PAL制转为NTSC制。
- ⑥ 色副载波恢复电路压控振荡器(VCO)晶体连接端。在PAL制,接4.43MHz 串联谐振晶体;在NTSC制,接3.58MHz或4.43MHz晶体,视是NTSC-M制还是NTSC-N制。当工作在PAL/NTSC双制式时,需外接开关转换所接晶体。
- ① 自动相位控制(APC)滤波端子。集成电路内部APC 标准电位是6V左右 (U_{CC} = 9V),① 外接分压电阻大小,可改变APC的引入范围。电阻增大,引入范围变宽;反之,引入范围变窄。
 - ® B-Y色差信号输入端,该脚的输入阻抗为16kΩ左右。
- 19 色调(TINT)控制输入端。在NTSC制,给该脚加上可变直流电压,就可进行色调控制。由于集成电路内部标准电压为1/2*Ucc*,因此,当19电压为1/2*Uacc*时,该电压即为TINT控制中心。当使用9V电源时,TINT控制中心电压为4.5V左右。在PAL制,由于集成电路内部已停止TINT电路的工作,这时,该脚可不加直流电压。
 - ② R-Y色差信号输入端,该脚输入阻抗约16kΩ左右。
 - ②1 R-Y色差信号输出端。
 - ② 对LA7681。为对比度控制输出端;对LA7680,为G-Y色差信号输出端。
 - ② B-Y色差信号输出端。为了避免瞬间打火引起的集成电路损坏,一般可在② 、②、②

外接数值为270Ω和390pF的低通滤波器。

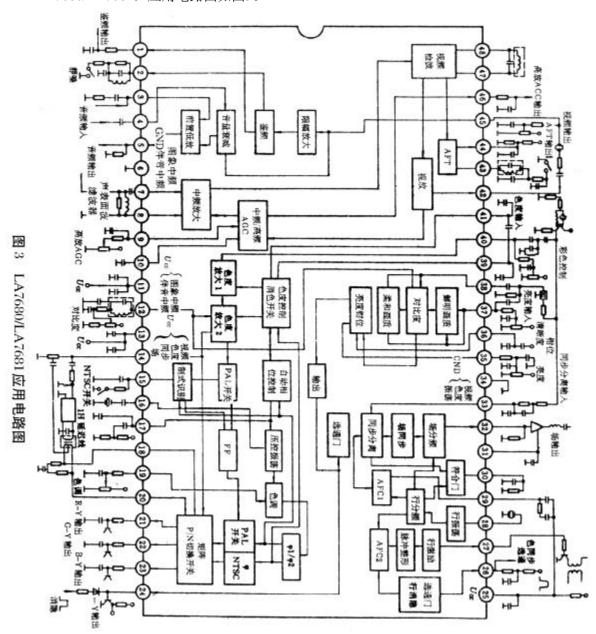
- ② -Y亮度信号输出及行消隐脉冲输入端。通过外部串接电阻和二极管加一正行逆程脉冲至 ② ,可完成亮度信号和色度信号的行消隐。串联电阻流入②的峰值电流在10mA以下。场消隐是在集成电路内部自动完成的。
- ② 行偏转电路电源端,经电阻与电源电压(24V)相连。② 直流电压为7.5V,通过改变外接电阻大小,使流过② 的电流为13mA。
 - ② 具有行逆程脉冲输入,色同步选通脉冲形成及VTR开关三种功能。

行逆程脉冲输入。通过串联电阻限流(5mA以下)输入约100V的行逆程脉冲,经外接积分电路积分,在AFC I 锁相环回路中进行相位比较,消除行输出存贮时间引起的相位变化,即图象位置变化。改变②分外接积分电路积分量,可调整图象水平方向中心位置。

色同步选通脉冲的形成。通过外接电阻输入的行逆程脉冲,在色同步形成脉冲期,在集成电路内限幅至 $U_{cc}+2U_{f}$,打通选通门,选出色同步脉冲。当画面相位关系未保持正常时,色同步形成脉冲不输出。

VCR开关。当②重叠DC2.4~3.4V电压时,VCR开关动作,②的控制电流为正常值的2倍。 当帧自由动作时,VCR开关不动作。

- ② 行激励脉冲输出端,为推挽式行输出激励脉冲输出。
- 28 行振荡陶瓷振荡器的连接端。外接500kHz信号,经集成电路内32倍分场频器分频,得到行频信号,继续分频后得到场频信号。
- ② AFC 1 滤波端子。为改善对电源波动的稳定性,滤波器设在电源侧。当外接电阻将AFC 控制电流转换为电压时,集成电路内部② ±1.5V限幅器动作。
- ⑩ 行同步检测滤波端子。⑩外接滤波器时间常数大小,影响频道转换时间同步引入速度。时间常数小,同步引入速度变快。由于场信号、噪声等原因,时间常数设置过小,电压易下降,所以,决定⑩滤波时间常数需考虑弱场特性、噪声特性、同步引入速度等。为了加快当频道转换时帧同步引入速度,可向⑩输入频道转换信号,使频道转换时,时间常数减小,同步引入速度增大,转换后恢复正常工作时的时间常数,有较好的弱场特性。
- ① 50Hz/60Hz场频识别输出端,与LA7837/LA7838 相连。在集成电路内部自动识别场同步信号周期,判断场频是50Hz还是60Hz,并将识别结果送①。为了避免因噪声产生的误动作,③ 外接 $0.01\sim0.47\,\mu$ F电容。当场频为60Hz时,③ 输出高电平;当场频为50Hz时,③ 可直接接地;当固定使用60Hz场频时,③ 可接电源电压 U_{cc} 。
- ② 该脚是一个多功能复用端子。兼作场激励输出、帧同步分离灵敏度设定、外部帧触发输入、自动触发方式解除开关及场同步等。改变 ② 外接电阻,可改变帧同步分离灵敏度。帧同步分离灵敏度有高、低之分,②输出波形为 $2/3U_{cc}$ 期间为高期间。当②电阻为 $24k\Omega$ 时,取得帧同步的最小同步脉冲宽度,在高期间为 14μ s,②外接电阻变化,这个比值不变。
- ③ 同步分离复合全电视信号输入端。通过 ③ 外部串接的阻容电路,设定同步分离的驱动电流(大约为150 µA)。③ 并接电容到地,作弱电场时的高频滤波。③ 具有在无噪声和完全无


信号时使画面保持全黑的功能。

- ③ 视频信号、色度信号接地端。
- ③ 亮度、副亮度控制端。亮度控制中心电压为4.5V,这时②-Y输出直流电压约为3V。③ 接一电阻、电容串联电路到地,可改变直流重现率。
- 30 钳位滤波端。该脚外接一电容到地,一电容到电源 U_{cc} 。当亮控制在中心位置时,30 电压为3.3V左右。考虑到电源通/断(ON/OFF)时的瞬态响应,将外接电容装在接地侧和电源侧,两电容之比以1:2为宜。
- ③ 2 次微分输入和视频清晰度控制端。可根据视频清晰度的要求和-Y输出波形的预冲量与下冲量的差异,调整外围电路的电阻值。
- ③ 视频信号输入端。外接亮度延迟线及匹配电路。③ 标准输入视频信号电平为 0.5~0.8V (P-P)。
- 39、41) 自动色度控制及消色滤波连接端。该两端子的作用之一是平滑彩色同步检测输出。 41)还可用于白平衡调整。
- ④ 色度信号输入及色度控制端。④外接色度带通滤波器,从复合全电视信号中分离出的色度信号,交流耦合到④,其输入阻抗约为 $7k\Omega$ 。输入信号幅度为100mV (P-P),信号不能过大。改变加到④的直流电压,可完成色饱和度控制,控制中心电压为1/2Ucc,当Ucc 为9V时,控制中心电压约为4.5V左右。
- ④ 复合全电视信号输出端。视频检波信号从该脚输出,当无信号时,该脚电压为4.5V,输出视频信号幅度为2V(P-P)。改变该脚串联电阻大小,射随器输出的频率特性也随之变化。
- ④ AFT线圈及AFT通/断(ON/OFF)端子。LA7680/LA7681 AFT采用乘法检波电路。④外接线圈为90°移相线圈。当图象中频为中心频率时,以视频检波线圈来的中频信号与经④线圈进行90°相移的中频信号,在乘法检波器中进行相位检波后,误差信号送到④输出,加到调谐器AFT输入端,完成AFT作用。当④外接相移线圈经 $1k\Omega$ 电阻接地时,AFT断开不起作用,AFT为OFF状态, $1k\Omega$ 电阻断开,AFT为ON状态,因此,通过开关控制 $1k\Omega$ 电阻接地与否,可实现AFT ON/OFF控制。
- ④ AFT控制电压输出端,当无信号时,④输出直流电压约为4.5V。通过外接电阻可改变AFT 灵敏度。
- ④ 第二件音中频信号输入及直流电控衰减输入端。这是一种不平衡式伴音中频信号输入端, 其输入阻抗约为 3kΩ。改变④直流电压,可控制集成电路内部电控衰减器衰减量大小,达到音量控制目的,④与④间通过不同的网络,对抑制嗡声效果不一样,使用时应注意。
- ④ RF AGC电压经射随器从④输出,④外接RC电路的大小决定RF AGC时间常数,即决定AGC作用速度的快慢。④最大输出直流电压为8V,改变外接电阻分压比,决定输出电压大小,可以适应不同调谐器需要。
- ④、④ 视频检波线圈连接端。外接视频检波线圈,调谐在图象中频。回路Q值在60左右为最佳。若线圈并接大的阻尼电阻,对抑制2.07MHz)差拍干扰有利,但视频检波输出特性会变

坏,一般阴尼电阻取4.7kΩ左右为宜。

(四) LA7680/LA7681应用电路

LA7680/LA7681,应用电路图如图3。

从图中可见,LA7680/LA7681不仅可完全替代三洋83P系列机芯中M5154AP和μPC1403/1423两块集成电路,而且LA7680/LA7681还有一些新的功能,如适宜PAL/NTSC双制式信号处理,并与SECAM制色度解码电路相连接的方便接口,易实现PAL/NTSC/SECAM多制式接收,以及50Hz/60Hz场频自动识别等。

综上所述: LA7680/LA7681是彩色电视机小信号处理较为理想的单片集成电路之一。

三、LA7837/LA7838集成电路解说与应用

LA7837/LA7838是三洋公司为彩电、监视器、显示器,尤其是为高画质、大屏幕彩电而开发的场输出用集成电路。

(一) LA7837/LA7838的特点

- 1. LA7837/LA7838由于采用了新的电路程式,较之过去的场输出电路大幅度提高了隔行扫描性能,减少了帧抖动。
- 2. LA7837/LA7838首次内藏驱动功能,小信号处理集成电路之间不存在交、直流反馈、具有单独处理场扫描的特点。
- 3. 由于LA7837/LA7838由过去线性锯齿波信号改为脉冲输入型,因此,即使前端集成电路和LA7837/LA7838之间的引线耦合混入了噪声,尤其是行噪声,对场扫描都无影响。
- 4. LA7837/LA7838还内藏锯齿波电压发生器、50Hz/60Hz场频转换时场幅稳定电路、热保护电器,泵电源电路、场输出电路等。
- 5. LA7837与LA7838的区别在于允许通过的偏转电流不同。LA7837允许的偏转电流为1.8A (P-P), LA7838为2.2A(P-P)。换言之, LA7838比LA7837更适宜大屏幕电视机作场偏转输出电路。

(二) LA7837/LA7838的组成

LA7837/LA7838的组成方框图如图4。

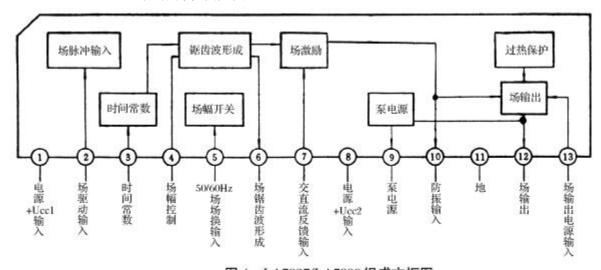
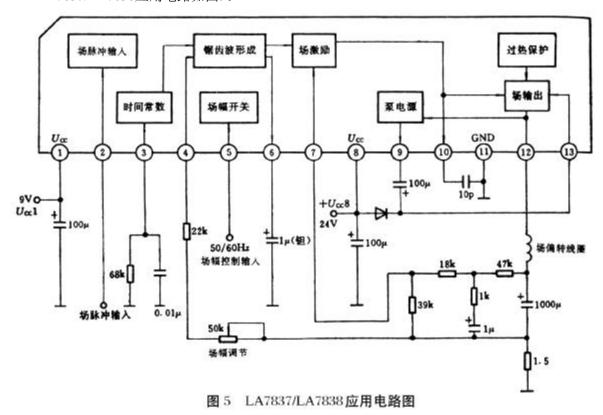


图 4 LA7837/LA7838组成方框图

从图中可见、LA7837/LA7838主要由垂直触发输入电路、单稳多谐振荡器电路、垂直幅度控制开关电路、锯齿波形成电路、垂直激励电路、场扫描输出放大电路、泵电源电路以及热保护电路等组成。

(三) LA7837/LA7838各脚功能

为了便于应用,现将LA7837/LA7838各脚功能简述如下。


① U_{ccl} 电源输入端。电源电路产生的DC9V电压加到此脚,供给垂直触发输入电路、单稳电

路、锯齿波形成电路等。

- ② 垂直触发输入端。从小信号处理电路 LA7680/LA7681输出的负极性触发脉冲加到此端,驱动内部差分放大器,经微分,利用其脉冲前沿触发单稳电路,因此,输入脉冲宽度的变化,对电路工作无影响。
- ③ 单稳多谐振荡器时间常数设定端。单稳电路的作用从触发脉冲送入②时开始。将产生的锯齿波电压在③外接RC时间常数期间,锯齿波电压固定在 5/12Ucc 范围内,从而防止因行成份引起的锯齿波开始电压的波动,以获得良好的隔行扫描特性。③RC 时间常数必须设定在场输出回扫期内,通常取场回扫期的1/2左右,即约0.5 ms为宜。
- ④ 场幅控制端。锯齿波形成电容充电电流的大小,决定了场幅的大小。④外接电阻、电位器等决定锯齿波形成电容的充电电流。因此,改变④ 外接电阻的大小,就可调整场幅。当50Hz场频工作时,充电电流为75 μA;当60Hz场频工作时,充电电流为90 μA。从而保证了当50Hz场频变换时,场幅不变。
- ⑤ 当50Hz/60Hz转换时,场幅稳定控制输入端。当LA7837/LA7838用于PAL/NTSC双制式工作时,集成电路内藏电路保持场幅不变。这是由于LA7680/LA7681的50Hz/60Hz场频自动识别电路提供一控制信号加到⑤ 控制锯齿波形成电容充电电流的大小所致。在 50Hz 场频,控制信号为0,⑤ 电压为0,锯齿波形成电容充电电流为 75 μ A;在 60Hz 场频,控制信号为高电平,⑤ 电位亦为高电平,控制LA7837/LA7838内场幅控制开关,使充电电流为90 μ A,达到稳定场幅目的。当仅工作在50Hz场频时,⑤ 接电源电压 U_{cco}
- ⑥ 锯齿波电压形成端。该脚外接锯齿波电压形成电容器。LA7837/LA7838内单稳电路产生的脉冲变成恒流源给锯齿波电压形成电容充电,形成线性锯齿波电压。充电电流的大小受④ 外接电阻的控制。
- ⑦ 场交、直流反馈输入端。⑦外接 RC与②场输出级相连,场输出耦合电容产生的抛物波和负反馈电阻产生的锯齿波相加后,加到⑦ 成为反馈交流信号;场输出级直流电压经电阻接到①成为直流负反馈。当⑥、⑦ 波形加到驱动电路时,就形成了交流负反馈。⑥、⑦ 波形幅度相同,相位相反。⑥、⑦波形平均直流电平大致相同。场输出直流偏置电压的稳定性也依赖⑥、⑦的波形而动作。
 - (8) U_{cc2} 电源电压输入端,正常工作电压为+24V。
 - 9 泵电源输出端。
- ⑩ 防止寄生振荡负反馈输入端。场扫描输出级工作在大信号状态,由于寄生耦合作用,有时会产生寄生振荡,因此,一般在 ⑩ 和场扫描输出 ⑫接10~20pF 小电容器,依靠负反馈作用防止高频振荡,提高场输出级的工作稳定性。
 - (11) 接地端。
- ② 场扫描输出端。② 输出的锯齿波信号加到场偏转线圈,使电子束产生垂直偏转,完成场扫描作用。
 - (13) 场输出电源电压输入端。

(四) LA7837/LA7838应用电路

LA7837/LA7838应用电路如图5。

(五) LA7837/LA7838应用中存在的问题及解决办法

1. 高频振荡及其防振措施

场输出电路是一个放大电路,有时因设计失当、印制板走线不合理、寄生耦合等会产生高频振荡。消除高频振荡有以下两个措施。

- a. 在LA7837/LA7838^①与②之间连接10~20pF小电容,构成高频负反馈,降低场输出增益,消除高频振荡;
 - b. 在(2)与地之间接一RC串联电路使高频相位反转,达到停振目的。
 - 2. 因交流电压变化、高压变化引起的场幅变化的预防措施
 - 在行输出整流电源与60之间加一适当反馈电阻,以减小高压变化产生的影响。
 - 3. 解决隔行扫描特性不好及帧抖动的措施
 - 隔行扫描特性变差的主要原因有:
 - a. 行成份混入LA7837/LA7838的电源输入端:
 - b. 行成份使②输入触发脉冲不稳;
- c. 由于LA7837/LA7838②的输入阻抗高,当②在印制板上排版靠近行输出变压器时,易受行干扰影响;

- d. LA7837/LA7838的地线中有较大偏转电流流过,易产生相互耦合等。解决措施是:
- a. LA7837/LA7838(1)供电应采用RC去耦滤波,或经电子滤波器后供电:
- b. 减小LA7837/LA7838⑦外接电路的阻抗, 使⑦无行成份混入;
- c. 帧偏转和行偏转电路分开接地,至少相互远离。
- 4. 50Hz/60Hz场幅控制端使用方法问题

当接收PAL制和接收NTSC制信号时,由于场频不同,从60Hz场频转换到50Hz场频,理论上画面尺寸要扩大20%。因为LA7837/7838的场幅功能是通过⑥锯齿波电压发生器稳流电路的电流比来实现的,所以50Hz/60Hz场幅控制端⑤方法是:当50Hz时,⑤接地;当60Hz时,⑤接电源 U_{cc} 。

5. LA7837/LA7838散热器接地问题

LA7837/7838是大功率器件,使用时需要加散热器。由于显象管高压易产生打火、静电等,会感应、泄放到散热器上,若散热器未接地,这些电压有可能烧坏集成电路,因此,散热器必须接地良好。另外,高输入阻抗引脚,如②、⑦等,最好外接保护电阻。一般②的保护电阻最大 $1k\Omega$ 左右:⑦的保护电阻在200 Ω ~ $1k\Omega$,视外接阻抗而定。

6. LA7838/LA7838印制板布线注意事项

LA7837/LA7838进行印制板布线时,应使外接元器件尽量靠近集成电路附近;外接元器件接地应尽量靠近集成电路;帧偏转接地与行偏转接地应完全分开;LA7837/LA7838应尽量远离行输出变压器。

(六) LA7838/LA7838与LA7830的性能比较

LA7830是三洋83P系列机芯采用的场输出集成电路,主要与μPC1403/1423配合工作,完成场扫描输出放大功能。LA7830由三部分组成;场激励放大器、脉冲放大器和场输出功率放大器。主要起放大作用。LA7830的工作依赖于μPC1403/1423提供的场扫描激励信号,与μPC1403/1423之间有较复杂的交、直流反馈关系,因此,外围电路繁琐,维修调整不便,对于保证隔行扫描的正确性,解决帧抖动等问题,如没有可行措施,不适合在60Hz场频和非标准视频信号工作。LA7837/LA7838针对LA7830存在的问题和不足采取了相应措施,性能有较大提高,是一个较为理想的场输出集成电路。

A3机芯实用维修数据及元器件代用

1. IC101单片线性集成电路LA7681/LA7680

主要用于产生图象中频、伴音中频、解调、色度解码、视频、同步、行场扫描激励信号及AFT等小信号的处理。各脚功能和维修参考数据如表1。以下各表的在路电阻均用500型万用表测量,电压均用8050型数字电压表测量。

表1 LA7681/LA7680各脚功能和维修参考数据

引	在路电	。 阻(KΩ)	参考工作	14 *	十
出脚	正测	负测	电压(V)	状态	主要功能
(1)	8.2	8.8	3.6		伴音调频解调输出、去加重
(2)	29	9.2	6.0		6 MHz 调频解调
(3)	7.8	10.5	4.6		音频前置放大负反馈端
(4)	7.8	10	5.8		音频信号输入端
(5)	7.8	9	4.0		音频信号输出端
(6)	0	0	0		图象、伴音中频信号接地端
(7)	19	8.5	4.8		图象中频放大平衡输入端之一
(8)	19	8.5	4.8		图象中频放大平衡输出端之二
(9)	7	10	6.0		射频(调谐器)AGC电压控制端
(10)	7.5	10	7 (<1)	 正常工作(搜台状态)	AGC电压外接滤波电容端
(11)	0.5	0.5	9.0		图象伴音中频电路电源输入端
(12)	8.5	30	6.7		对比度控制电压输入端,色同步净化
(13)	0.5	0.5	9.0		视频、色度、同步电路电源输入端
(14)	1.2	1.2	5.7 (0)	PAL (NTSC)	色度信号输出端
(15)	7.5	10	7 (<3)	PAL (NTSC)	识别滤波电容接入端
(16)	10.5	9.4	5.8		色载波恢复压控振荡晶体接入端
(17)	7.5	9.8	6.2		自动相位控制 (APC) 滤波器端
(18)	7.5	10.5	3.4	PAL	U 色度信号输入端
(19)	7.5	8.6	4.8	NTSC	NTSC 制色调控制端
(20)	7.5	10.5	3.5		V 色度信号输入端
(21)	4	4	5.5		R—Y 色差信号输出端
(22)	2.3	2.3	5.5	(G—Y)	对比度控制输出端(LA7680为(G—Y)输出)
(23)	4	4	5.5		B—Y 色差信号输出端
(24)	6.3	10	4.5		—Y 信号输出,消隐信号输入

引	在路电	强(K Ω)	参考工作	4b +	2				
脚	正测	负测	电压(V)	状态	主要功能				
(25)	2.5	2.6	7.7		行偏转电路电源接入端				
(26)	9.5	8	0.6		沙堡脉冲形成,VTR 开关				
(27)	7.5	8.2	0.8		行激励脉冲输出端				
(28)	7.9	9.5	5.2		500kHz陶瓷振荡器连接端				
(29)	7.5	10	5.8		AFC1滤波器端				
(30)	7.5	10	7.4		行同步检测滤波端				
(31)	7.5	8.5	0.4 (7)	50Hz (60Hz)	50/60Hz场频识别输出端				
(32)	7	8.9	4.8		多功能复用端、场激励输出端				
(33)	9.5	9.2	7.0		同步分离全电视信号输入端				
(34)	0	0	0		视频、色度信号接地端				
(35)	7.6	9.5	4.4		亮度副亮度控制输入端				
(36)	7.5	10.5	2.8		钳位滤波器端				
(37)	7.5	10	8.6		清晰度控制端				
(38)	6.9	8	1.8		视频信号输入端				
(39)	7.6	10.5	5.6		自动色度控制及消色滤波器端				
(40)	7.3	10	4.8		色度信号输入及色度控制端				
(41)	7.6	10	6.2		自动色度控制及消色滤波器端				
(42)	0.7	0.7	3.5		复合全电视信号输出端				
(43)	7.5	9	7.2		AFT 调整线圈及AFT ON/OFF端				
(44)	7.5	12	5.4		AFT 控制电压输出端				
(45)	7	8.5	5.0		第二件音中频信号及音量控制输入端				
(46)	9	10	4.0		调谐器 AGC 电压输出端				
(47)	8.3	9	5.0		视频检波线圈连接端1				
(48)	8.3	9	5.0		视频检波线圈连接端2				

2. IC701微处理器 (CPU) M34300N4-721SP

M34300N4-721SP是电压合成调谐方式微处理器,用于电视机的各种遥控。各脚功能及维修参考数据如表2。

表2 M34300N4-624SP各脚功能和维修参考数据

引	在路电	阻(KΩ)	参考工作	14 *	十
出 脚	正测	负测	电压(V)	状态	主要功能
(1)	7.0	15.0	0.1		消隐输出 1
(2)	6.5	15.0	0		绿色字符输出

引	在路电	阻(K Ω)	参考工作	117 Y.	· · · · · · · · · · · · · · · · · · ·				
脚	正测	负测	电压(V)	状态	主要功能				
(3)	7.0	14.0	0		消隐输出 2				
(4)	7.0	14.0	0		静噪				
(5)	6.8	17.0	4.6		TV/AV 切换				
(6)	5.2	15.0	4.9	TV	场消隐脉冲输入				
(7)	4.5	5.5	4.9	正常工作	复位				
(8)	5.5	13.0	2.3	正常工作	AFT 输入				
(9)	5.6	13.0	3.6	未用 	时基信号输入				
(10)	5.2	5.5	10.3	立旦旦十	音量控制				
(11)	5.8	6.2	10.0	音量最大	色饱和度控制				
(12)	6.6	18.0	5.8		亮度控制				
(13)	7.0	50.0	10.1		对比度控制				
(14)	5.5	15.0	4.9	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	遥控信号输入				
(15)	7.0	5.6	4.5	正常工作	过载保护检测(低电平有过载)				
(16)	7.0	12.0	0	通	AFT 通 (ON) /断 (OFF) 开关				
(17)	6.0	0	0	正常工作	电源通/断控制(高电平断,低电平通)				
(18)	0	0	0	未用	AV、AV2控制端				
(19)	0	0	0	正常工作	测试用连接脚,工作时接地				
(20)	7.0	15.0	1.4	3 CH	调谐电压输出脚				
(21)	0	0	0		接地端				
(22)	7.0	12.0	4.9		键盘扫描输入端 (低起作用)				
(23)	7.0	12.0	4.9		键盘扫描输入端 (低起作用)				
(24)	7.0	12.0	4.9		键盘扫描输入端 (低起作用)				
(25)	7.0	12.0	4.9		键盘扫描输入端 (低起作用)				
(26)	6.0	9.0	0	 SI 状态,即 PAL/SE-	键盘扫描输出兼制式控制输出				
				CAM 自动识别					
(27)	6.0	9.0	0		键盘扫描输出兼制式控制输出				
(28)	6.5	∞	0.65		键盘扫描输出				
(29)	6.5	∞	4.8		键盘扫描输出				
(30)	6.5	∞	4.8		键盘扫描输出				
(31)	6.2	9.2	0	VHF L 频段 VHF L 频段	频段控制				
(32)	6.2	9.0	0		频段控制				
(33)	6.8	11.0	2.7	Skew 输出断开	VTR 时间常数校正输出				
(34)	9.0	10.0	2.1		时钟振荡输入(4 MHz)				
(35)	9.0	10.0	2.2		时钟振荡输出 (4 MHz)				

引	在路电阻(KΩ)		参考工作	112 - 1-	수 표 다 W	
出 脚	正测	负测	电压(V)	状态	主要功能	
(36)	7.0	16.0	0.7	未用	图文电视控制输出(时钟)	
(37)	7.0	16.0	0.7	未用	图文电视控制输出(数据)	
(38)	5	15.0	4.9	无显示	屏显场同步脉冲输入	
(39)	5.2	12.0	4.1	无显示	屏显行同步脉冲输入	
(40)	7.5	12.0	0.6	振荡	6 MHz 屏显振荡器	
(41)	6.5	12.0	0.1	振荡	6 MHz 屏显振荡器	
(42)	2.5	0	4.9		VCC 电源输入端	

4.IC171 伴音功放电路 AN5265

AN5265 是松下公司生产的单路输出音频功率放大器,主要用于音频功率放大、音量控制和静音(Mute)。各脚功能及维修参考数据如表3。

引	在路电	蛋(ΚΩ)	参考工作	JD -#-	스 표 및 사		
出 脚	正测	负测	电压(V)	状态	主要功能		
(1)	0.5	0.5	11.5		VCC1 电源输入端		
(2)	7.5	9.0	5.0		音频信号输入端		
(3)	4.2	4.2	0.0	静音	静音控制端		
(4)	5.0	3.0	0.1	声音最小	直流音量控制输入端		
(5)	7.0	12.0	7.0		滤波器		
(6)	7.5	10.0	7.4		反馈输入端		
(7)	0	0	0		接地端		
(8)	6.5	60.0	7.5		音频功放输出端		
(9)	3.5	>100	15.0		VCC2 功放电源输入端		

表3 AN5265 各脚功能和维修参考数据

5. IC451 场输出电路 LA7837

LA7837 是三洋公司生产的场输出集成电路,与IC101 (LA7680)配合,用于场输出触发、锯齿波形成、50/60Hz场扫描切换及场扫描输出等。各脚功能及维修参考数据如表4。

引	在路电	阻(K Ω)	参考工作	状态	主要功能			
出 脚	正测	负测	电压(V)	1人 念	主要功能			
(1)	0.5	0.5	9.0		电源电压(9V)输入端			
(2)	7.0	20.0	4.8		场驱动输入端			
(3)	9.7	19.0	4.8		单稳外接时间常数电容			
(4)	9.5	55.0	4.8		场幅控制输入端			

表4 LA7837 各脚功能和维修参考数据

引	在路电	蛋(ΚΩ)	参考工作	112 - X-	구 표 다 W
脚	正测	负测	电压(V)	状态	主要功能
(5)	7.0	8.5	<0.2 (>7)	50/60Hz	50/60Hz 场切换输入端
(6)	7.5	9.5	4.8		锯齿波形成电容连接端
(7)	3.4	3.4	4.6		交直流负反馈输入端
(8)	5.5	24.0	24.0		24 V 电源电压输入端
(9)	7.5	24.0	1.9		泵电源
(10)	7.0	8.5	1.5		防寄生振荡输入
(11)	0	0	0		地
(12)	2.2	2.2	15.0		场扫描输出端
(13)	6	2M Ω	24.0		场输出级电源输入端

6. IC801 视频切换开关节 LC4066

LC4066 主要用于 AV/TV 状态伴音/视频切换。各脚功能和维修参考数据如表5。

表5 LC4066 各脚功能和维修参考数据

引	在路电	ЙД(К Ω)	参考工作	ль - Х.	子
出 脚	正测	负测	电压(V)	状态	主要功能
(1)	7.5	32.0	2.8		信号输入端
(2)	7.0	29.0	1.5		信号输出端
(3)	7.0	29.0	1.3		信号输入端
(4)	4.0	4.0	2.0		信号输出端
(5)	5.5	6.0	0.1	TV	开关控制输入端
(6)	5.5	6.0	0.1	TV	开关控制输入端
(7)	0	0	0		接地端
(8)	6.8	10.0	3.7		信号输出端
(9)	7.0	27.0	0		信号输入端
(10)	7.0	30.0	28		信号输入端
(11)	4.0	4.0	2.6		信号输出端
(12)	6.0	6.0	12		控制信号输入端
(13)	5.6	6.0	0	TV	控制信号输入端
(14)	0.5	0.5	12.0	TV	电源输入端

7. IC710 频段切换开关 LA7910

LA7910 为 2~4 线译码器,在 CPU、IC101 频段控制输出信号控制下,用于频段的切换。其真值表如表7,各脚功能和维修参考数据如表8。

输	入	输出				工作频段
(3)	(4)	(5)	(6)	(7)	(8)	工计观权
L	L	Н	L	L	L	V (L)
L	Н	L	Н	L	L	V (H)
Н	L	L	L	Н	L	U
Н	Н	L	L	L	Н	CATV (未用)

表8 LA7910 各脚功能和维修参考数据

引	在路电	阻(K Ω)	参考工作	14 * -	- 市 中 44
出 脚	正测	负测	电压(V)	状态	主要功能
(1)	120.0	7.2	0		输出
(2)	17.5	7.5	12.5	V (H) 频段	输出
(3)	6.5	8.5	2.0		控制输入
(4)	6.5	9.0	0		控制输入
(5)	0	0	0		接地
(6)	6.0	50.0	14.0		电源输入端
(7)	1.5	1.5	0		输出端
(8)	∞	8.5			输出端
(9)	0.5	0.5	12.0		电源输入端

8. 各晶体管工作电压

表9 各晶体管工作电压

电压值(V) 机	Q601	Q611	Q621	Q432	Q431	Q802	Q810	Q241	Q124	Q101
$U_{ m b}$	6.6	6.6	6.6	2.3	0.06	6.6	0.06	4.6	2	1.2
$U_{ m c}$	104	103	100	80	19	12	12.5	1.2	0	0.4
$U_{ m e}$	6.4	6.4	6.4	2.4	0	6	5.3	5.3	2.8	4.2
电压值(V) 和内容是工作电压	Q110	Q533	Q513	Q512	Q511	Q701	Q721	Q731	Q732	Q733
U_{b}	10	7	-1.5	-2.7	10	0	4.6	0.03	0.7	0.7
$U_{ m c}$	12	40	280	-1.5	-0.8	5.4	5.2	7	0.06	0.03
$U_{ m e}$	9	6.5	0	0	10.8	0	5.3	0	0	0

电压值(V) 和文文是工作电压	Q741	Q742	Q751	Q785	Q792	Q301	Q341	Q351	Q357	Q641
U_{b}	0.15	0.17	0.03	0.5	0	6	2.6	-0.7	0.7	0
$U_{ m c}$	0.1	12	7.2	4.6	11	12	6.5	12	0.08	100
$U_{ m e}$	0.9	12	0	0	0	5.5	2.2	0	0	0

9. 行输出变压器

型号码 FD00199 机内代号码 T471 主要参数见表10。

表10 行输出变压器主要参数

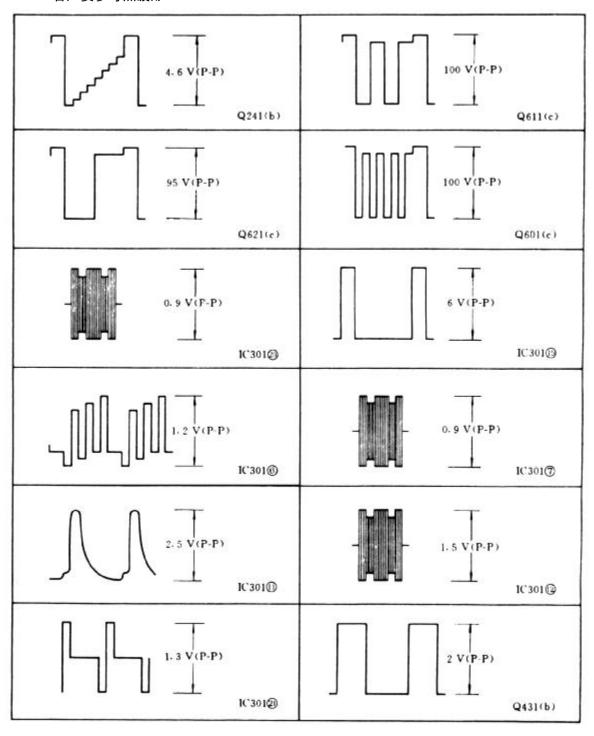
参数名称	参数值	参数名称	参数值	
直流电压	$130\pm2V$	输入电流	$412 \pm 20 \text{mA}$	
高压输出电压	$25.2 \pm 0.5 \text{kV}$	高压负荷电流	1.1mA	
振铃比	6%(max)	高压调整率	≤10%	
聚焦电压变化比(对高压)	28.5%~33.5%	灯丝电压	$6.3 \pm 0.3 \text{V(RMS)}$	
回扫时间	$11.3 \pm 02 \mu \text{ s}$	逆程电容	6920pF	
适用偏转线圈	DY0219XMA	水平幅度	334 ± 5mm	

10.电源开关变压器

型号码 AD00 机内代号 T511 绕制要求见表11。

表11 电源开关变压器绕制要求

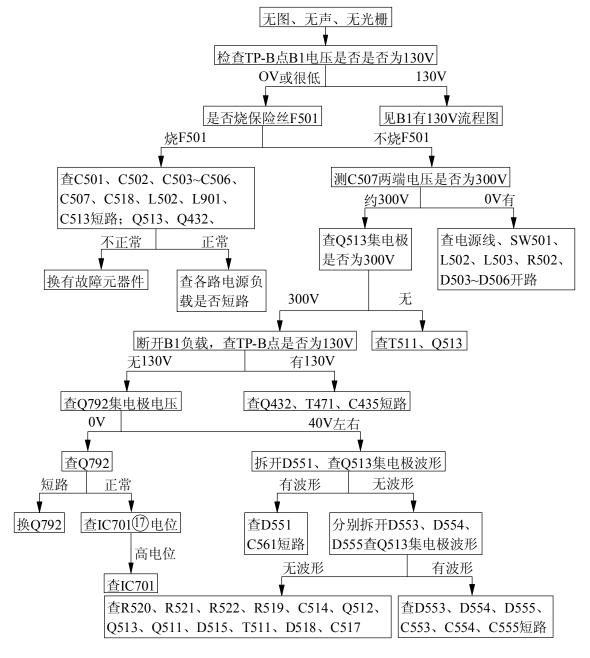
接 线 图	线圈	端子号	SXTL Y	圈数	磁芯
1	P1	7-3	0.4	96	
00-1 52-00	S	(12) — (11)	0.45	63	
	SL	(15) — (10)	0.4	9	
30-15 { } & SK	SK	(13) — (12)	0.3	24	EEC40
© ~] } { <u>& sv</u> ~ 0	SV	(14) — (11)	0.3	13	
} } [ost os	SA	(6) - (10)	0.3	9	
0 • • • • • • • • • • • • • • • • • • •	PD	2 - 1	0.4	4	

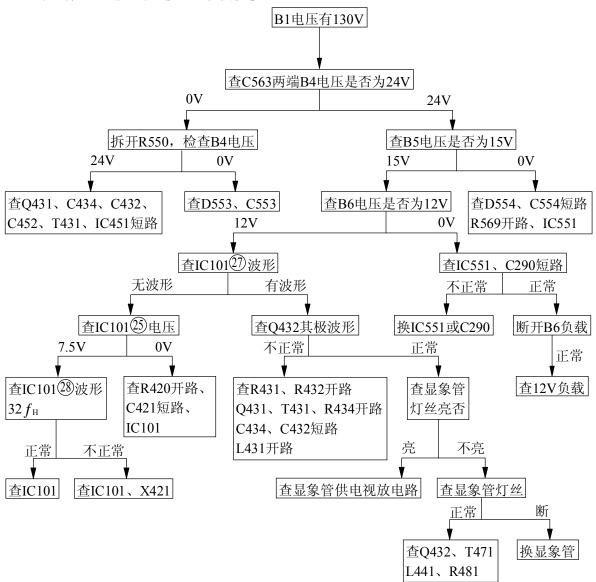

11. 电源变压器(遥控电源)

型号 PT0146A 机内代号 T581 技术数据见表。

表12 遥控电源变压器技术数据

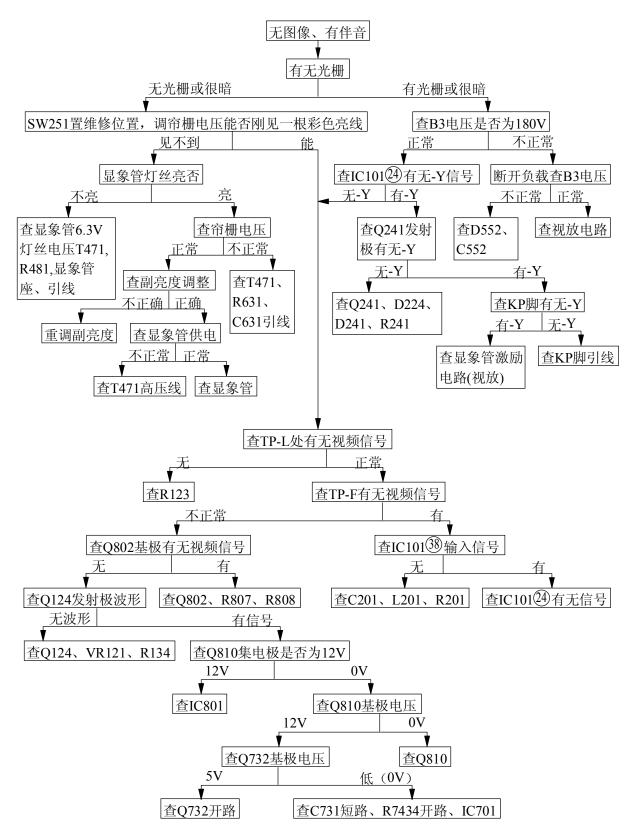
接线图	①—⑤ 端电压	9-6 端电压	空载电流	耐压	绝缘电阻
©	AC240V/ 50Hz	AC15.1±5V 负载电流 30mA	≤20mA在 240V50Hz 时	"	≥100M Ω


12. 各产要参考点波形


A3机芯检修指南

1. 无图、无声、无光栅

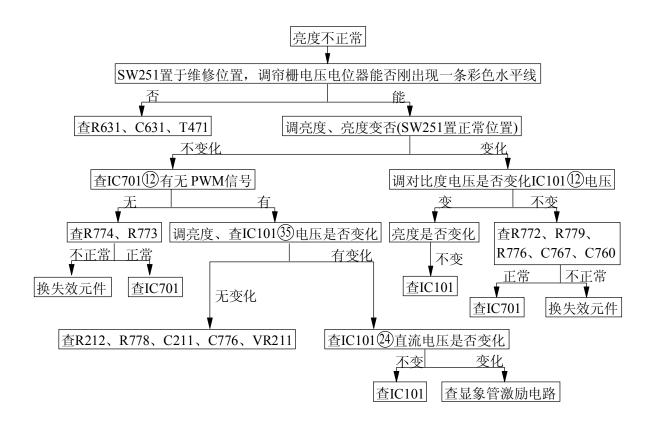
A3机芯电源电路的组成特点是除显象管高压、聚焦电压、帘栅电压以外,全部电压由开关稳压电源提供。因此,若电源出故障,电视机就会出现三无。电源电路故障可能是电源电路本身故障,也可能是所接负载电路故障。这类故障可按本流程图检修,当检查到B1有130V电压时,就要转向,按下面流程图检修。



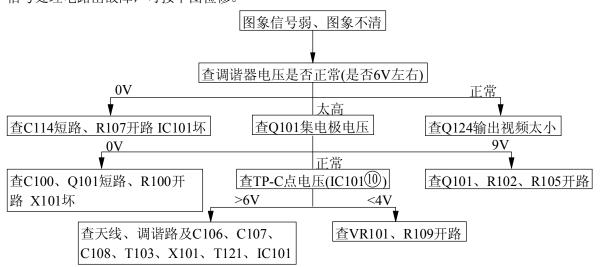
当B1有130V电压时,按右流程图检修。


2. 无图象、有伴音

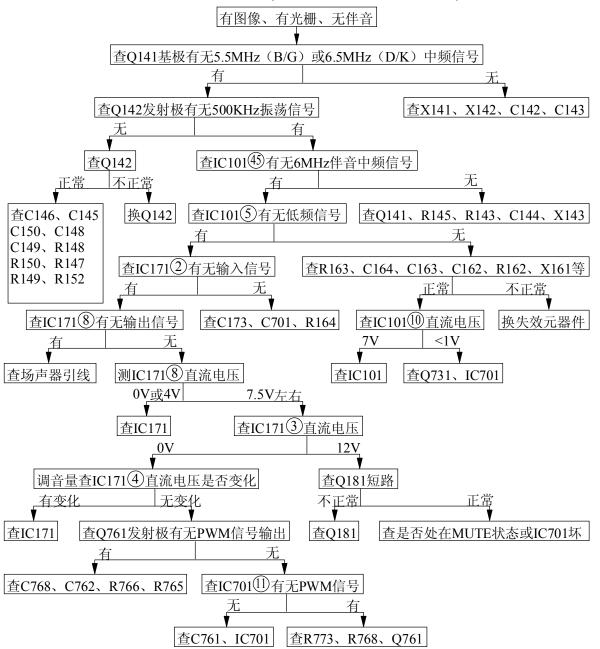
无图象有伴音,说明从天线端到图象检波输出电路是正常的。无图象有两种可能:一是有 光栅无图象;二是无光栅无图象。这类故障可按上图和右图流程图检修。


3. 无图象、无伴音、有光栅

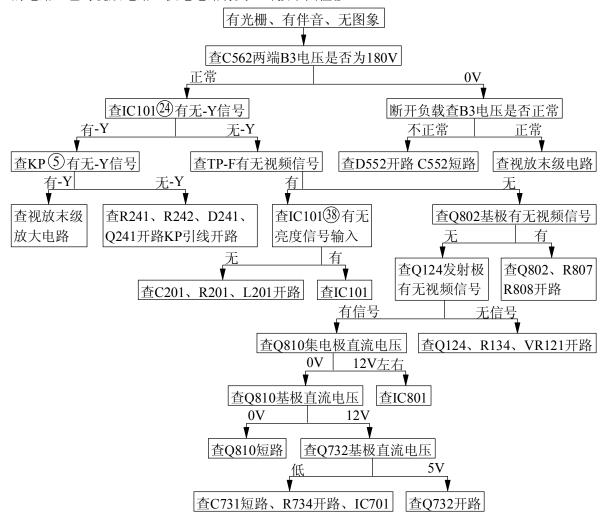
有光栅说明电源、扫描、视放、显象管供电电路正常,故障在图象、伴音公用通道,即与调谐器、前置中放、图象中放、视频检波电路有关,可按下图检修。


4. 亮度不正常

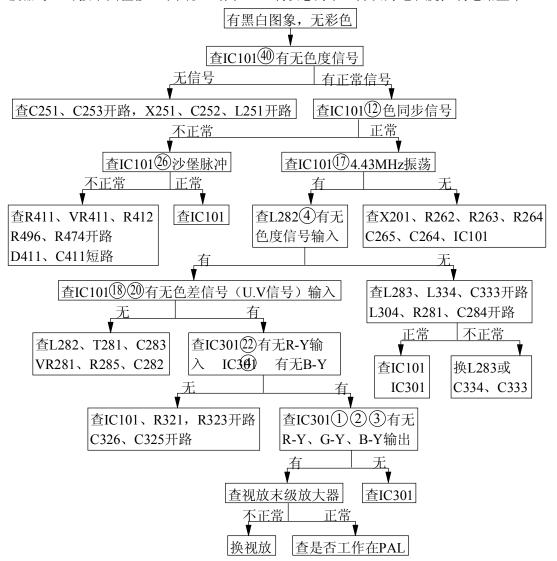
这类故障表现为在收看电视节目时,有正常的图象和伴音,但画面显得过亮、过暗,当调 节亮度时变化很小或不变化。可按下图检修。


5. 图象淡,雪花噪声大

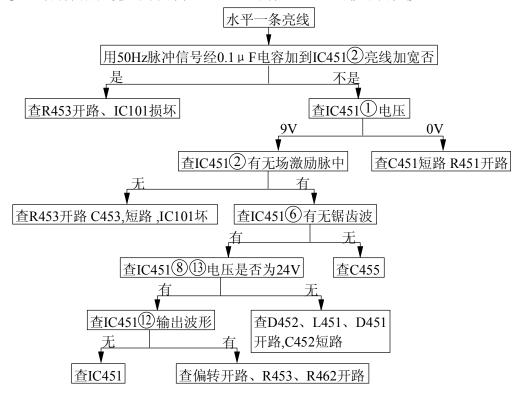
在收看节目时,电视机图象淡,雪花噪声点大通常是由于调谐器和中放通道增益降低所引起的。当检修时应重点检查调谐器AGC电压、前置中放、中放电器(IC101)等,也不排除视频信号处理电路出故障,可按下图检修。


6. 光栅、图象正常, 无伴音

光栅、图象正常,说明电视机电源正常,图象、伴音公共通道电路正常,故障在伴音第二中频处理电路、扬声器等,可按下图检修。(也可由下向上的流程进行检修)


7. 光栅、伴音正常, 无图像

电视机在开机后光栅、伴音正常,但无图象,故障主要在视频检波之后到显象管阴极之间 的电路,也与视放电路、供电电路有关,可按下图检修。


8. 无彩色

电视机在接收彩色电视节目时,只能显示稳定的黑白图象,而无彩色。A3机芯彩色处理电路除4.43MHz晶振、梳状滤波器、4.43MHz谐振电路等外,均集成在IC101内。当检修时应重点检查色度带通滤波器、色度信号处理电路、色副载波恢复电路、色同步信号选通电路、梳状滤波器等,可按下图检修。下图以工作在PAL制状态为准,并认为饱和度控制电路正常。

9. 水平一条亮线

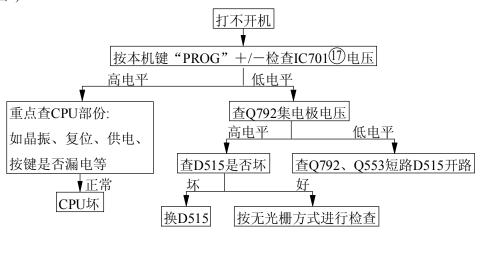
电视机在接通电源后,出现一条水平亮线,说明电源电路、行扫描电路、显象管供电电路正常,故障在场扫描电路。通常可用50Hz脉冲信号经0.1 μ F电容加到场扫描输出电路输入端 IC451② ,若场扫描加宽,则故障在IC101,否则在IC451,可按下图检修。

10. 谣控系统故障

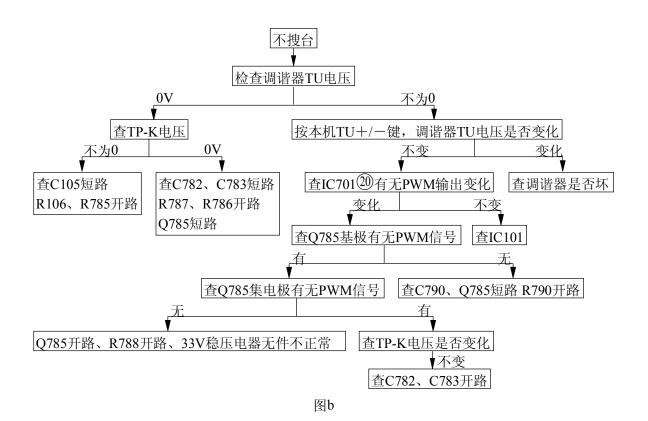
A3机芯遥控系统的CPU采用M34300N-721SP。遥控系统故障通常有两种情况:一是本机键控制功能正常,机器能正常工作,而用遥控盒控制时,机器不受控。这种情况一般是由于遥控发射器或遥控接收前置放大器有故障,这时应检查遥控盒和接收器有关元器件是否良好;二是用本机键和遥控盒控制,机器都不能正常工作。这种情况一般是由于CPU或接口控制电路出现故障。在检修前应仔细分析故障现象,判定故障部位再检修。

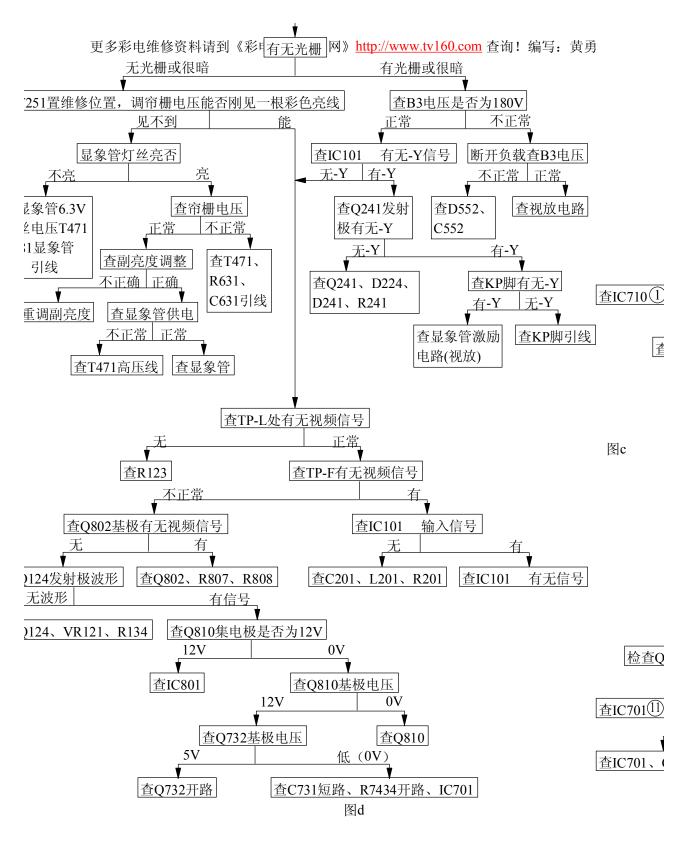
(1) "POWER"开关不起作用,不能开机

电视机接通主电源,红色指示灯亮,机器处于待机状态,按遥控盒"POWER"键及本机"PROG"+/一键(兼待机状态POWER开关用)均不能开机,故障一般在CPU及与POWER开关有关的电路,可按下图检修。(见图a)


(2) 不搜台

A3机芯用CPU只能手动搜台,用遥控盒可进行微调。这种故障一般在CPU、调谐电压转换电路及调谐器,可按下图检修。(见图b)


(3) 频段不转换


这种故障表现为在某一频段电视机能正常搜台,但在另一些频段搜不到台,故障主要在频段切换电路,可按下图检检修。(见图c)

(4) 电视机模拟量——音量、亮度、对比度、色度不受控制为例说明其检修程序,见下图。(见图d)

图a

